Plants display a range of temporal patterns of inter-annual reproduction, from relatively constant seed production to "mast seeding," the synchronized and highly variable interannual seed production of plants within a population. Previous efforts have compiled global records of seed production in long-lived plants to gain insight into seed production, forest and animal population dynamics, and the effects of global change on masting. Existing datasets focus on seed production dynamics at the population scale but are limited in their ability to examine community-level mast seeding dynamics across different plant species at the continental scale.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
Despite decades of research documenting the consequences of naturalized and invasive plant species on ecosystem functions, our understanding of the functional underpinnings of these changes remains rudimentary. This is partially due to ineffective scaling of trait differences between native and naturalized species to whole plant communities. Working with data from over 75,000 plots and over 5,500 species from across the United States, we show that changes in the functional composition of communities associated with increasing abundance of naturalized species mirror the differences in traits between native and naturalized plants.
View Article and Find Full Text PDFMast seeding is a well-documented phenomenon across diverse forest ecosystems. While its effect on aboveground food webs has been thoroughly studied, how it impacts the soil fungi that drive soil carbon and nutrient cycling has not yet been explored. To evaluate the relationship between mast seeding and fungal resource availability, we paired a Swiss 29-year fungal sporocarp census with contemporaneous seed production for European beech (Fagus sylvatica L.
View Article and Find Full Text PDFMany perennial plants show mast seeding, characterized by synchronous and highly variable reproduction across years. We propose a general model of masting, integrating proximate factors (environmental variation, weather cues, and resource budgets) with ultimate drivers (predator satiation and pollination efficiency). This general model shows how the relationships between masting and weather shape the diverse responses of species to climate warming, ranging from no change to lower interannual variation or reproductive failure.
View Article and Find Full Text PDFDeclines in bumble bee species range and abundances are documented across multiple continents and have prompted the need for research to aid species recovery and conservation. The rusty patched bumble bee (Bombus affinis) is the first federally listed bumble bee species in North America. We conducted a range-wide population genetics study of B.
View Article and Find Full Text PDFProlonged water stress can shift rhizoplane microbial communities, yet whether plant phylogenetic relatedness or drought tolerance predicts microbial responses is poorly understood. To explore this question, eight members of the clade with varying affinity to serpentine soil were subjected to three watering regimes. Rhizoplane bacterial communities were characterized using 16S rRNA gene amplicon sequencing and we compared the impact of watering treatment, soil affinity, and plant species identity on bacterial alpha and diversity.
View Article and Find Full Text PDFPremise: Glandular trichomes are implicated in direct and indirect defense of plants. However, the degree to which glandular and non-glandular trichomes have evolved as a consequence of herbivory remains unclear, because their heritability, their association with herbivore resistance, their trade-offs with one another, and their association with other functions are rarely quantified.
Methods: We conducted a phylogenetic comparison of trichomes and herbivore resistance against the generalist caterpillar, Heliothis virescens, among tarweed species (Asteraceae: Madiinae) and a genetic correlation study comparing those same traits among maternal half-sibs of three tarweed species.
Understanding processes leading to disease emergence is important for effective disease management and prevention of future epidemics. Utilizing whole genome sequencing, we studied the phylogenetic relationship and diversity of two populations of the bacterial oak pathogen Lonsdalea quercina from western North America (Colorado and California) and compared these populations to other Lonsdalea species found worldwide. Phylogenetic analysis separated Colorado and California populations into two Lonsdalea clades, with genetic divergence near species boundaries, suggesting long isolation and populations that differ in genetic structure and distribution and possibly their polyphyletic origin.
View Article and Find Full Text PDFTrees must allocate resources to core functions like growth, defense, and reproduction. These allocation patterns have profound effects on forest health, yet little is known about how core functions trade off over time, and even less is known about how a changing climate will impact tradeoffs. We conducted a 21-year survey of growth, defense, and reproduction in 80 ponderosa pine individuals spanning eight populations across environmental gradients along the Colorado Front Range, USA.
View Article and Find Full Text PDFAbstractOaks ( spp.) are masting species exhibiting highly variable and synchronized acorn production. We investigated the hypothesis that periodical cicadas ( spp.
View Article and Find Full Text PDFClimate change models often assume similar responses to temperatures across the range of a species, but local adaptation or phenotypic plasticity can lead plants and animals to respond differently to temperature in different parts of their range. To date, there have been few tests of this assumption at the scale of continents, so it is unclear if this is a large-scale problem. Here, we examined the assumption that insect taxa show similar responses to temperature at 96 sites in grassy habitats across North America.
View Article and Find Full Text PDFInvasive species science has focused heavily on the invasive agent. However, management to protect native species also requires a proactive approach focused on resident communities and the features affecting their vulnerability to invasion impacts. Vulnerability is likely the result of factors acting across spatial scales, from local to regional, and it is the combined effects of these factors that will determine the magnitude of vulnerability.
View Article and Find Full Text PDFThe movement of plant species across the globe exposes native communities to new species introductions. While introductions are pervasive, two aspects of variability underlie patterns and processes of biological invasions at macroecological scales. First, only a portion of introduced species become invaders capable of substantially impacting ecosystems.
View Article and Find Full Text PDFThe U.S. Fish and Wildlife Service developed national guidelines to track species recovery of the endangered rusty patched bumble bee [Bombus affinis Cresson (Hymenoptera: Apidae)] and to investigate changes in species occupancy across space and time.
View Article and Find Full Text PDFRoot hemiparasitic plants both compete with and extract resources from host plants. By reducing the abundance of dominant plants and releasing subordinates from competitive exclusion, they can have an outsized impact on plant communities. Most research on the ecological role of hemiparasites is manipulative and focuses on a small number of hemiparasitic taxa.
View Article and Find Full Text PDFSpecies range sizes and realized niche breadths vary tremendously. Understanding the source of this variation has been a long-term aim in evolutionary ecology and is a major tool in efforts to ameliorate the impacts of changing climates on species distributions. Species ranges that span a large climatic envelope can be achieved by a collection of specialized genotypes locally adapted to a small range of conditions, by genotypes with stable fitness across variable environments, or a combination of these factors.
View Article and Find Full Text PDFThe relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged.
View Article and Find Full Text PDFSignificant gaps remain in understanding the response of plant reproduction to environmental change. This is partly because measuring reproduction in long-lived plants requires direct observation over many years and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a data set that collates reproductive time-series data from across the globe and makes these data freely available to the community.
View Article and Find Full Text PDFNarrowing the communication and knowledge gap between producers and users of scientific data is a longstanding problem in ecological conservation and land management. Decision support tools (DSTs), including websites or interactive web applications, provide platforms that can help bridge this gap. DSTs can most effectively disseminate and translate research results when producers and users collaboratively and iteratively design content and features.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2022
Tree fecundity and recruitment have not yet been quantified at scales needed to anticipate biogeographic shifts in response to climate change. By separating their responses, this study shows coherence across species and communities, offering the strongest support to date that migration is in progress with regional limitations on rates. The southeastern continent emerges as a fecundity hotspot, but it is situated south of population centers where high seed production could contribute to poleward population spread.
View Article and Find Full Text PDFNovel interactions between introduced oaks and their natural enemies across different continents provide an opportunity to test the enemy release hypothesis (ERH) at local and global scales. Based on the ERH, we assessed the impacts of native seed-feeding insects on introduced and native oaks within and among continents. We combined a common-garden experiment in China and biogeographic literature surveys to measure seed predation by insects and the proportion of acorn embryos surviving after insect infestation among 4 oak species with different geographical origins: Quercus mongolica origin from China, Q.
View Article and Find Full Text PDF