Publications by authors named "Ian N Roberts"

The human pathogen is considered an obligate commensal of animals, yet it is occasionally isolated from trees, shrubs, and grass. We generated genome sequence data for three strains of that we isolated from oak trees in an ancient wood pasture, and compared these to the genomes of over 200 clinical strains. strains from oak are similar to clinical in that they are predominantly diploid and can become homozygous at the mating locus through whole-chromosome loss of heterozygosity.

View Article and Find Full Text PDF

Background: Rice husk and rice straw represent promising sources of biomass for production of renewable fuels and chemicals. For efficient utilisation, lignocellulosic components must first be pretreated to enable efficient enzymatic saccharification and subsequent fermentation. Existing pretreatments create breakdown products such as sugar-derived furans, and lignin-derived phenolics that inhibit enzymes and fermenting organisms.

View Article and Find Full Text PDF

Background: Rice straw and husk are globally significant sources of cellulose-rich biomass and there is great interest in converting them to bioethanol. However, rice husk is reportedly much more recalcitrant than rice straw and produces larger quantities of fermentation inhibitors. The aim of this study was to explore the underlying differences between rice straw and rice husk with reference to the composition of the pre-treatment liquors and their impacts on saccharification and fermentation.

View Article and Find Full Text PDF

In addition to ethanol, yeasts have the potential to produce many other industrially-relevant chemicals from numerous different carbon sources. However there remains a paucity of information about overall capability across the yeast family tree. Here, 11 diverse species of yeasts with genetic backgrounds representative of different branches of the family tree were investigated.

View Article and Find Full Text PDF

Two strains, D5088T and D5095, representing a novel yeast species belonging to the genus Saccharomyces were isolated from oak tree bark and surrounding soil located at an altitude of 1000 m above sea level in Saint Auban, France. Sequence analyses of the internal transcribed spacer (ITS) region and 26S rRNA D1/D2 domains indicated that the two strains were most closely related to Saccharomyces mikatae and Saccharomyces paradoxus. Genetic hybridization analyses showed that both strains are reproductively isolated from all other Saccharomyces species and, therefore, represent a distinct biological species.

View Article and Find Full Text PDF

Five arthroconidium-producing yeast strains representing a novel Trichosporon-like species were independently isolated from the UK, Hungary and Norway. Two strains (Bio4T and Bio21) were isolated from biogas reactors used for processing grass silage, with a third strain (S8) was isolated from soil collected at the same UK site. Two additional strains were isolated in mainland Europe, one from soil in Norway (NCAIM Y.

View Article and Find Full Text PDF

Effective conversion of xylose into ethanol is important for lignocellulosic ethanol production. In the present study, UV-C mutagenesis was used to improve the efficiency of xylose fermentation. The mutated Scheffersomyces shehatae strain TTC79 fermented glucose as efficiently and xylose more efficiently, producing a higher ethanol concentration than the wild-type.

View Article and Find Full Text PDF

Despite the considerable number and taxonomic breadth of past and current genome sequencing projects, many of which necessarily encompass the ribosomal DNA, detailed information on the prevalence and evolutionary significance of sequence variation in this ubiquitous genomic region are severely lacking. Here, we attempt to address this issue in two closely related yet contrasting yeast species, the baker's yeast Saccharomyces cerevisiae and the wild yeast Saccharomyces paradoxus. By drawing on existing datasets from the Saccharomyces Genome Resequencing Project, we identify a rich seam of ribosomal DNA sequence variation, characterising 1,068 and 970 polymorphisms in 34 S.

View Article and Find Full Text PDF

The twenty-first century has brought new opportunities and challenges to yeast culture collections, whether they are long-standing or recently established. Basic functions such as archiving, characterizing and distributing yeasts continue, but with expanded responsibilities and emerging opportunities. In addition to a number of well-known, large public repositories, there are dozens of smaller public collections that differ in the range of species and strains preserved, field of emphasis and services offered.

View Article and Find Full Text PDF

Background: Fermentation of bioethanol using lignocellulosic biomass as a raw material provides a sustainable alternative to current biofuel production methods by utilising waste food streams as raw material. Before lignocellulose can be fermented, it requires physical, chemical and enzymatic treatment in order to release monosaccharides, a process that causes the chemical transformation of glucose and xylose into the cyclic aldehydes furfural and hydroxyfurfural. These furan compounds are potent inhibitors of Saccharomyces fermentation, and consequently furfural tolerant strains of Saccharomyces are required for lignocellulosic fermentation.

View Article and Find Full Text PDF

This study evaluated steam (SE) explosion on the saccharification and simultaneous saccharification and fermentation (SSF) of waste copier paper. SE resulted in a colouration, a reduction in fibre thickness and increased water absorption. Changes in chemical composition were evident at severities greater than 4.

View Article and Find Full Text PDF

The wealth of phylogenetic information accumulated over many decades of biological research, coupled with recent technological advances in molecular sequence generation, presents significant opportunities for researchers to investigate relationships across and within the kingdoms of life. However, to make best use of this data wealth, several problems must first be overcome. One key problem is finding effective strategies to deal with missing data.

View Article and Find Full Text PDF

Background: High-throughput (HTP) screening is becoming an increasingly useful tool for collating biological data which would otherwise require the employment of excessive resources. Second generation biofuel production is one such process. HTP screening allows the investigation of large sample sets to be undertaken with increased speed and cost effectiveness.

View Article and Find Full Text PDF

Seven strains representing a novel yeast species belonging to the genus Kazachstania were found at several collection sites on both mainland Ecuador (Yasuní National Park) and the Galápagos (Santa Cruz Island). Two strains (CLQCA 20-132(T) and CLQCA 24SC-045) were isolated from rotten wood samples, two further strains (CLQCA 20-280 and CLQCA 20-348) were isolated from soil samples, and three strains (CLQCA 20-198, CLQCA 20-374 and CLQCA 20-431) were isolated from decaying fruits. Sequence analyses of the D1/D2 domains of the LSU rRNA gene and ribosomal internal transcribed spacer (ITS) region indicated that the novel species is most closely related to Kazachstania servazzii and Kazachstania unispora.

View Article and Find Full Text PDF

Five British ale yeast strains were subjected to flavour profiling under brewery fermentation conditions in which all other brewing parameters were kept constant. Significant variation was observed in the timing and quantity of flavour-related chemicals produced. Genetic tests showed no evidence of hybrid origins in any of the strains, including one strain previously reported as a possible hybrid of Saccharomyces cerevisiae and S.

View Article and Find Full Text PDF

The ribosomal RNA encapsulates a wealth of evolutionary information, including genetic variation that can be used to discriminate between organisms at a wide range of taxonomic levels. For example, the prokaryotic 16S rDNA sequence is very widely used both in phylogenetic studies and as a marker in metagenomic surveys and the internal transcribed spacer region, frequently used in plant phylogenetics, is now recognized as a fungal DNA barcode. However, this widespread use does not escape criticism, principally due to issues such as difficulties in classification of paralogous versus orthologous rDNA units and intragenomic variation, both of which may be significant barriers to accurate phylogenetic inference.

View Article and Find Full Text PDF

Waste copier paper is a potential substrate for the production of glucose relevant for manufacture of platform chemicals and intermediates, being composed of 51 % glucan. The yield and concentration of glucose arising from the enzymatic saccharification of solid ink-free copier paper as cellulosic substrate was studied using a range of commercial cellulase preparations. The results show that in all cellulase preparations examined, maximum hydrolysis was only achieved with the addition of beta-glucosidase, despite its presence in the enzyme mixtures.

View Article and Find Full Text PDF

Five strains representing a novel yeast species belonging to the genus Wickerhamomyces were independently isolated from Ecuador, Taiwan and the USA. One strain (CLQCA 10-161(T)) was isolated from the white flower of an unidentified plant species collected in the Maquipucuna cloud forest reserve, near Quito, in Ecuador. A second strain (GY7L12) was isolated from the leaf of a Chinese sumac or nutgall tree (Rhus chinensis 'roxburghiana') collected in the Taoyuan mountain area, Kachsiung, in Taiwan.

View Article and Find Full Text PDF

A fundamental goal of second generation ethanol production is to increase the ethanol concentration to 10% (v/v) or more to optimise distillation costs. Semi simultaneous saccharification and fermentations (SSSF) were conducted at small pilot scale (5L) utilising fed-batch additions of solid shredded copier paper substrate. Early addition of Accellerase® 1500 at 16 FPU/g substrate and 30 U/g β-glucosidase followed by substrate only batch addition allowed low final equivalent enzyme concentrations to be achieved (3.

View Article and Find Full Text PDF

In the course of an on-going study aimed at cataloguing the natural yeast biodiversity found in Ecuador, two strains (CLQCA 13-025 and CLQCA 20-004(T)) were isolated from samples of cow manure and rotten wood collected in two separate provinces of the country (Orellana and Bolívar). These strains were found to represent a novel yeast species based on the sequences of their D1/D2 domain of the large-subunit (LSU) rRNA gene and their physiological characteristics. Phylogenetic analysis based on LSU D1/D2 sequences revealed this novel species to belong to the Metschnikowia clade and to be most closely related to Candida suratensis, a species recently discovered in a mangrove forest in Thailand.

View Article and Find Full Text PDF

Four strains representing a novel yeast species belonging to the genus Candida were independently isolated in Taiwan and Ecuador. Two strains (G17(T) and G31) were isolated in Taiwan, by pellet precipitation from plastic-bottled tea drinks produced in Indonesia, while two additional strains (CLQCA 10-049 and CLQCA 10-062) were recovered from ancient chicha fermentation vessels found in tombs in Quito, Ecuador. These four strains were morphologically, and phylogenetically identical to each other.

View Article and Find Full Text PDF

A new yeast species was isolated from the sediment under metal-contaminated effluent from a disused metal mine in mid-Wales, UK. BLAST searching with DNA sequence amplified from the ribosomal 26S D1/D2 and ITS regions did not reveal a close match with any previously described species (≥6 % and 3 % divergence, respectively). Phylogenetic analysis indicated that the species was a member of the Saccharomycetales, but did not group closely with other established species, the nearest relative being Wickerhamia fluorescens although bootstrap support was not strong.

View Article and Find Full Text PDF

Two yeast morphotypes, BET 4(T) and BET 7, were isolated from the gut of click beetle Melanotus villosus. Click beetles were collected from the decaying timber within the woodlands of North Wyke Research, South West England, UK (latitude, 50°46'29″N; longitude, 3°55'23″W). Morphotype BET 7 was identified as Debaryomyces hansenii, and the other morphotype, BET 4(T), was found to differ from Priceomyces castillae and Priceomyces haplophilus, its closest phylogenetic neighbours, by 5.

View Article and Find Full Text PDF

A single strain, CLQCA-10-114(T), representing a novel yeast species belonging to the genus Saturnispora was isolated from the fruit of an unidentified species of bramble (Rubus sp.), collected from the Maquipucuna cloud forest reserve, near Quito, in Ecuador. Sequence analyses of the D1/D2 domains of the large-subunit rRNA gene and ribosomal internal transcribed spacer region indicated that the novel species is most closely related to the recently described species Saturnispora gosingensis, isolated from the fruiting body of a mushroom collected in Taiwan, and Saturnispora hagleri, a Drosophila-associated yeast found in Brazil.

View Article and Find Full Text PDF

The aim of this article is to review how yeast has contributed to contemporary biotechnology and to seek underlying principles relevant to its future exploitation for human benefit. Recent advances in systems biology combined with new knowledge of genome diversity promise to make yeast the eukaryotic workhorse of choice for production of everything from probiotics and pharmaceuticals to fuels and chemicals. The ability to engineer new capabilities through introduction of controlled diversity based on a complete understanding of genome complexity and metabolic flux is key.

View Article and Find Full Text PDF