Publications by authors named "Ian M Tucker"

The Internet is increasingly used to seek support by those suffering with mental distress (Bauman, S. and Rivers, I. Mental Health and the Digital Age.

View Article and Find Full Text PDF

A Markov chain (MC) model has been used to model the following binary surfactant mixtures: linear alkylbenzenesulfonate (LAS4)/octaethylene glycol monododecyl ether (C12E8) at 10 and 25 °C, LAS6/acidic sophorolipid (AS), C12Betaine/C12Maltoside, sodium lauryl ether sulfate (SLES2)/C12E8, and rhamnolipid (R1)/LAS6. The critical micellar concentration and the composition of the adsorbed layer, for each system, can be modeled using the same monomer reactivity ratio values, g and g. This implies that the interactions between the surfactants in the bulk solution and at the interface are the same, within error.

View Article and Find Full Text PDF

This paper presents analysis from 'a study of staff and patient experiences of the restrictive environments of a forensic psychiatric unit. The paper conceptualises the forensic unit as an impermanent assemblage, enacted in and through practices that hold a future life outside the unit simultaneously near, yet far. We show how the near-far relations between life inside and outside the unit operate in three ways; 1) in relation to the 'care pathway', 2) practices of dwelling, and 3) creating and maintaining connections to life 'beyond' the unit.

View Article and Find Full Text PDF

Surface compositions of adsorbed monolayers at the air/water interface, formed from binary surfactant mixtures in equilibrium, have been studied using neutron reflectivity at three discrete temperatures: 10, 25, and 40 °C. The binary compositions studied are sodium lauryl dodecyl ether sulfate (SLES EO3)/C12E n, where n = 6 and 8, at a fixed concentration of 2 mM with and without the addition of 0.1 M NaCl.

View Article and Find Full Text PDF

The composition of the air-water adsorbed layer of a quinary mixture consisting of three conventional surfactants, octaethylene glycol monododecyl ether (CE), dodecane-6-p-sodium benzene sulfonate (LAS6), and diethylene glycol monododecyl ether sodium sulfate (SLES), mixed with two biosurfactants, the rhamnolipids l-rhamnosyl-l-rhamnosyl-β-hydroxydecanoyl-β-hydroxydecanoyl, R2, and l-rhamnosyl-β-hydroxydecanoyl-β-hydroxydecanoyl, R1, has been measured over a range of compositions above the mixed critical micelle concentration. Additional measurements on some of the subsets of ternary and binary mixtures have also been measured by NR. The results have been analyzed using the pseudophase approximation (PPA) in conjunction with an excess free energy, G, that depends on the quadratic and cubic terms in the composition.

View Article and Find Full Text PDF

The composition of the air-water adsorbed layer of the ternary surfactant mixture, octaethylene monododecyl ether, CE, sodium dodecyl 6-benzenesulfonate, LAS, and sodium dioxyethylene glycol monododecyl sulfate, SLES, and of each of the binary mixtures, with varying amounts of electrolyte, has been studied by neutron reflectivity. The measurements were made above the mixed critical micelle concentration. In the absence of electrolyte adsorption is dominated by the nonionic component CE but addition of electrolyte gradually changes this so that SLES and LAS dominate at higher electrolyte concentrations.

View Article and Find Full Text PDF

This article develops the concept of digital atmosphere to analyse the affective power of social media to shape practices of care and support for people living with mental distress. Using contemporary accounts of affective atmospheres, the article focuses on feelings of distress, support and care that unfold through digital atmospheres. The power of social media intersects with people's support and care-seeking practices in multiple ways and not in a straightforward model of 'accessing or providing support'.

View Article and Find Full Text PDF

The composition of the adsorbed layer of a ternary surfactant mixture at the air-water interface has been studied by neutron reflectivity. The adsorption of the ternary mixture of octaethylene monododecyl ether (CE) sodium dodecyl 6-benzene sulfonate (LAS), and sodium dioxyethylene glycol monododecyl sulfate (SLES), as well as each of the binary mixtures, at solution concentrations greater than the mixed critical micelle concentration is highly nonideal. In the ternary mixture, the surface adsorption is dominated by CE and LAS, and there is little SLES at the interface.

View Article and Find Full Text PDF

Enhanced delivery of perfumes to interfaces is an important element of their effectiveness in a range of home and personal care products. The role of polyelectrolyte-surfactant mixtures to promote perfume adsorption at interfaces is explored here. Neutron reflectivity, NR, was used to quantify the adsorption of the model perfumes phenylethanol, PE, and linalool, LL, at the air-water interface in the presence of the anionic surfactant sodium dodecylsulfate, SDS, and the cationic polyelectrolytes, poly(dimethyldiallyl ammonium chloride), polydmdaac, and poly(ethyleneimine), PEI.

View Article and Find Full Text PDF

Enhanced surface delivery and retention of perfumes at interfaces are the keys to their more effective and efficient deployment in a wide range of home and personal care related formulations. It has been previously demonstrated that the addition of multivalent counterions, notably Ca(2+), induces multilayer adsorption at the air-water interface for the anionic surfactant, sodium dodecyl-6-benzenesulfonate, LAS-6. Neutron reflectivity, NR, measurements are reported here which demonstrate that such surfactant surface multilayer structures are a potentially promising vehicle for enhanced delivery of perfumes to interfaces.

View Article and Find Full Text PDF

The adsorption of the proteins β-casein, β-lactoglobulin, and hydrophobin, and the protein mixtures of β-casein/hydrophobin and β-lactoglobulin/hydrophobin have been studied at the air-water interface by neutron reflectivity, NR. Changing the solution pH from 7 to 2.6 has relatively little impact on the adsorption of hydrophobin or β-lactoglobulin, but results in a substantial change in the structure of the adsorbed layer of β-casein.

View Article and Find Full Text PDF

Surface multilayer formation from the anionic-nonionic surfactant mixture of sodium dodecyl dioxyethylene sulfate, SLES, and monododecyl dodecaethylene glycol, C12E12, by the addition of multivalent Al(3+) counterions at the solid-solution interface is observed and characterized by neutron reflectivity, NR. The ability to form surface multilayer structures on hydrophobic and hydrophilic silica and cellulose surfaces is demonstrated. The surface multilayer formation is more pronounced and more well developed on the hydrophilic and hydrophobic silica surfaces than on the hydrophilic and hydrophobic cellulose surfaces.

View Article and Find Full Text PDF

The synergistic interactions between certain ethoxylated polysorbate nonionic surfactants and the protein hydrophobin result in spontaneous self-assembly at the air-water interface to form layered surface structures. The surface structures are characterized using neutron reflectivity. The formation of the layered surface structures is promoted by the hydrophobic interaction between the polysorbate alkyl chain and the hydrophobic patch on the surface of the globular hydrophobin and the interaction between the ethoxylated sorbitan headgroup and hydrophilic regions of the protein.

View Article and Find Full Text PDF

The muon hyperfine coupling constant (Aμ) of the muoniated cyclohexadienyl radical (C6H6Mu) has been directly measured in a 5 mM solution of benzene in water by the radio-frequency muon spin resonance (RF-μSR) technique. The relative shift of Aμ in aqueous solution compared with the value in neat benzene (ΔAμ/Aμ = +0.98(5)% at 293 K) can now be compared directly with theoretical predictions.

View Article and Find Full Text PDF

The impact of surfactant geometry and electrolyte on the co-adsorption of anionic surfactants and model perfumes at the air-solution interface has been studied by neutron reflectivity. The more hydrophobic perfume linalool, competes more favourably for the surface with sodium dodecylsulfate than was previously reported for the anionic surfactant, sodium dodecyl 6-benzenesulfonate. Due to an increase in surface activity of the sodium dodecylsulfate, the addition of electrolyte results in a reduction in the linalool adsorption.

View Article and Find Full Text PDF

The impact of two model perfumes with differing degrees of hydrophobicity/hydrophilicity, linalool (LL) and phenylethanol (PE), on the solution structure of anionic surfactant sodium dodecyl 6-benzene sulfonate, LAS-6, has been studied by small angle neutron scattering, SANS. For both types of perfume molecules, complex phase behavior is observed. The phase behavior depends upon the concentration, surfactant/perfume composition, and type of perfume.

View Article and Find Full Text PDF

The adsorption of the model perfumes phenyl ethanol, PE, and linalool, LL, at the air-solution interface by coadsorption with the anionic surfactant sodium dodecyl 6-benezene sulfonate, LAS-6, has been studied primarily by neutron reflectivity, NR. The variation in the mixed surface adsorption with solution composition is highly nonideal, and the more hydrophobic LL is more surface active. At a LAS-6 concentration of 0.

View Article and Find Full Text PDF

Small-angle neutron scattering, zeta potential measurements, and dynamic light scattering have been used to investigate the adsorption of polymer-surfactant mixtures at the oil-water interface. The water-hexadecane interface investigated was in the form of small oil-in-water emulsion droplets stabilized by the anionic surfactant sodium dodecyl sulfate, SDS. The impact of the addition of two different cationic polymers, poly(ethyleneimine), PEI, and poly(dimethyldiallylammonium chloride), polydmdaac, on the SDS adsorption at the oil-water interface was studied.

View Article and Find Full Text PDF

The nature of hydrophobic thin cellulose films, formed by Langmuir-Blodgett (LB) deposition on silica, has been studied using neutron reflectivity (NR). The impact of electrolyte and a polyelectrolyte, poly(dimethyldiallylammonium chloride) (polydmdaac), on the adsorption of the anionic surfactant sodium dodecyl sulfate (SDS) onto the surface of the hydrophobic cellulose film and upon the structure of the cellulose film has been investigated. The results show how a combination of polyelectrolytes and electrolyte can be used to manipulate surfactant adsorption onto hydrophobic cellulose surfaces and modify the structure of the cellulose film by swelling and penetration.

View Article and Find Full Text PDF

The interaction of the anionic surfactant, sodium dodecylsulfate (SDS), with the hydrophilic surface of a thin cellulose film and the role of electrolyte (0.1 M NaCl) and the polyelectrolyte, poly(dimethyldiallyl ammonium chloride) [polydmdaac], have been studied by neutron reflectivity (NR). The thin cellulose films were prepared by Langmuir-Blodgett (LB) deposition of trimethylsilyl-cellulose (TMSC) on silicon, and the hydrophilic surface was produced by the cleaving of the terminal methyl groups of the TMSC by HCl vapor.

View Article and Find Full Text PDF

The adsorption of surface-active protein hydrophobin, HFBII, and HFBII/surfactant mixtures at the solid-solution interface has been studied by neutron reflectivity, NR. At the hydrophilic silicon surface, HFBII adsorbs reversibly in the form of a bilayer at the interface. HFBII adsorption dominates the coadsorption of HFBII with cationic and anionic surfactants hexadecyltrimethyl ammonium bromide, CTAB, and sodium dodecyl sulfate, SDS, at concentrations below the critical micellar concentration, cmc, of conventional cosurfactants.

View Article and Find Full Text PDF

The adsorption of the surface-active protein hydrophobin, HFBII, and the competitive adsorption of HFBII with the cationic, anionic, and nonionic surfactants hexadecyltrimethylammonium bromide, CTAB, sodium dodecyl sulfate, SDS, and hexaethylene monododecyl ether, C(12)E(6), has been studied using neutron reflectivity, NR. HFBII adsorbs strongly at the air-water interface to form a dense monolayer ∼30 Å thick, with a mean area per molecule of ∼400 Å(2) and a volume fraction of ∼0.7, for concentrations greater than 0.

View Article and Find Full Text PDF

The self-assembly of the protein hydrophobin, HFBII, and its self-assembly with cationic, anionic, and nonionic surfactants hexadecylterimethyl ammonium bromide, CTAB, sodium dodecyl sulfate, SDS, and hexaethylene monododecyl ether, C(12)E(6), in aqueous solution have been studied by small-angle neutron scattering, SANS. HFBII self-assembles in solution as small globular aggregates, consistent with the formation of trimers or tetramers. Its self-assembly is not substantially affected by the pH or electrolytes.

View Article and Find Full Text PDF

The impact of multivalent counterions, Al(3+), on the surface adsorption and self-assembly of the anionic surfactant sodium dodecyl dioxyethylene sulfate, SLES, and the anionic/nonionic surfactant mixtures of SLES and monododecyl dodecaethylene glycol, C(12)E(12), has been investigated using neutron reflectivity, NR, and small angle neutron scattering, SANS. The addition of relatively low concentrations of Al(3+) counterions induces a transition from a monolayer to well-defined surface bilayer, trilayer, and multilayer structures in the adsorption of SLES at the air-water interface. The addition of the nonionic cosurfactant, C(12)E(12), partially inhibits the evolution in the surface structure from monolayer to multilayer interfacial structures.

View Article and Find Full Text PDF

The temperature-dependent variation of local environment and reorientation dynamics of the small amphiphile 2-phenylethanol in lamellar phase dispersions of the dichain cationic surfactants, 2,3-diheptadecyl ester ethoxypropyl-1,1,1-trimethylammonium chloride (DHTAC) and dioctadecyldimethylammonium chloride (DODMAC), and the nonionic surfactant, tetra(ethylene glycol) n-dodecyl ether (C12E4), have been determined using avoided level crossing muon spin resonance spectroscopy (ALC-muSR). For cosurfactant radicals the hydrophobic or hydrophilic character of the surrounding media can be determined from their magnetic resonance signatures. Comparison of the three different bilayer-forming surfactant systems shows that the ALC-muSR technique is able to distinguish both major and subtle differences in the partitioning of the cosurfactant radicals between the different systems.

View Article and Find Full Text PDF