Publications by authors named "Ian M Hanson"

Background And Purpose: Real-time portal dosimetry compares measured images with predicted images to detect delivery errors as the radiotherapy treatment proceeds. This work aimed to investigate the performance of a recurrent neural network for processing image metrics so as to detect delivery errors as early as possible in the treatment.

Materials And Methods: Volumetric modulated arc therapy (VMAT) plans of six prostate patients were used to generate sequences of predicted portal images.

View Article and Find Full Text PDF

Objectives: In real-time portal dosimetry, thresholds are set for several measures of difference between predicted and measured images, and signals larger than those thresholds signify an error. The aim of this work is to investigate the use of an additional composite difference metric (CDM) for earlier detection of errors.

Methods: Portal images were predicted for the volumetric modulated arc therapy plans of six prostate patients.

View Article and Find Full Text PDF

Over the last few years, magnetic resonance image-guided radiotherapy systems have been introduced into the clinic, allowing for daily online plan adaption. While quality assurance (QA) is similar to conventional radiotherapy systems, there is a need to introduce or modify measurement techniques. As yet, there is no consensus guidance on the QA equipment and test requirements for such systems.

View Article and Find Full Text PDF

This study investigates the use of a running sum of images during segment-resolved intrafraction portal dosimetry for volumetric modulated arc therapy (VMAT), so as to alert the operator to an error before it becomes irremediable. At the time of treatment planning, predicted portal images were created for each segment of the VMAT arc, and at the time of delivery, intrafraction monitoring software polled the portal imager to read new images as they became available. The predicted and measured images were compared and displayed on a segment basis.

View Article and Find Full Text PDF

Dosimetric quality assurance (QA) of the new Elekta Unity (MR-linac) will differ from the QA performed of a conventional linac due to the constant magnetic field, which creates an electron return effect (ERE). In this work we aim to validate PRESAGE dosimetry in a transverse magnetic field, and assess its use to validate the research version of the Monaco TPS of the MR-linac. Cylindrical samples of PRESAGE 3D dosimeter separated by an air gap were irradiated with a cobalt-60 unit, while placed between the poles of an electromagnet at 0.

View Article and Find Full Text PDF

In the forward-projection method of portal dosimetry for volumetric modulated arc therapy (VMAT), the integrated signal at the electronic portal imaging device (EPID) is predicted at the time of treatment planning, against which the measured integrated image is compared. In the back-projection method, the measured signal at each gantry angle is back-projected through the patient CT scan to give a measure of total dose to the patient. This study aims to investigate the practical agreement between the two types of EPID dosimetry for prostate radiotherapy.

View Article and Find Full Text PDF

Background And Purpose: Delivering selected parts of volumetric modulated arc therapy (VMAT) plans using step-and-shoot intensity modulated radiotherapy (IMRT) beams has the potential to increase plan quality by allowing specific aperture positioning. This study investigates the quality of treatment plans and the accuracy of in vivo portal dosimetry in such a hybrid approach for the case of prostate radiotherapy.

Material And Methods: Conformal and limited-modulation VMAT plans were produced, together with five hybrid IMRT/VMAT plans, in which 0%, 25%, 50%, 75% or 100% of the segments were sequenced for IMRT, while the remainder were sequenced for VMAT.

View Article and Find Full Text PDF

Using an Electronic Portal Imaging Device (EPID) to perform in-vivo dosimetry is one of the most effective and efficient methods of verifying the safe delivery of complex radiotherapy treatments. Previous work has detailed the development of an EPID based in-vivo dosimetry system that was subsequently used to replace pre-treatment dose verification of IMRT and VMAT plans. Here we show that this system can be readily implemented on a commercial megavoltage imaging platform without modification to EPID hardware and without impacting standard imaging procedures.

View Article and Find Full Text PDF

Purpose: Portal dosimetry provides an accurate and convenient means of verifying dose delivered to the patient. A simple method for carrying out portal dosimetry for volumetric modulated arc therapy (VMAT) is described, together with phantom measurements demonstrating the validity of the approach.

Methods: Portal images were predicted by projecting dose in the isocentric plane through to the portal image plane, with exponential attenuation and convolution with a double-Gaussian scatter function.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: