The integrity of myelination is crucial for maintaining brain interstitial fluid (ISF) drainage in adults; however, the mechanism of ISF drainage with immature myelin in the developing brain remains unknown. In the present study, the ISF drainage from the caudate nucleus (Cn) to the ipsilateral cortex was studied at different developmental stages of the rat brain (P 10, 20, 30, 40, 60, 80, 10-80). The results show that the traced ISF drained to the cortex from Cn and to the thalamus in an opposite direction before P30.
View Article and Find Full Text PDFPurpose: Many radiotracers are currently available for the detection of recurrent prostate cancer (rPC), yet many have not been compared head-to-head in comparative imaging studies. There is therefore an unmet need for evidence synthesis to guide evidence-based decisions in the selection of radiotracers. The objective of this study was therefore to assess the detection rate of various radiotracers for the rPC.
View Article and Find Full Text PDFThe drainage of brain interstitial fluid (ISF) has been observed to slow down following neuronal excitation, although the mechanism underlying this phenomenon is yet to be elucidated. In searching for the changes in the brain extracellular space (ECS) induced by electrical pain stimuli in the rat thalamus, significantly decreased effective diffusion coefficient (D) and volume fraction (α) of the brain ECS were shown, accompanied by the slowdown of ISF drainage. The morphological basis for structural changes in the brain ECS was local spatial deformation of astrocyte foot processes following neuronal excitation.
View Article and Find Full Text PDF