Now in its 25th year, the Mutant Mouse Resource and Research Center (MMRRC) consortium continues to serve the United States and international biomedical scientific community as a public repository and distribution archive of laboratory mouse models of human disease for research. Supported by the National Institutes of Health (NIH), the MMRRC consists of 4 regionally distributed and dedicated vivaria, offices, and specialized laboratory facilities and an Informatics Coordination and Service Center (ICSC). The overarching purpose of the MMRRC is to facilitate groundbreaking biomedical research by offering an extensive repertoire of mutant mice that are essential for advancing the understanding of human physiology and disease.
View Article and Find Full Text PDFBackground: Neurodevelopmental disorders have a strong male bias that is poorly understood. Placenta is a rich source of molecular information about environmental interactions with genetics (including biological sex), that affect the developing brain. We investigated placental-brain transcriptional responses in an established mouse model of prenatal exposure to a human-relevant mixture of polychlorinated biphenyls (PCBs).
View Article and Find Full Text PDFAs genome sequencing technologies advance, the accumulation of sequencing data in public databases necessitates more robust and adaptable data analysis workflows. Here, we present Rocketchip, which aims to offer a solution to this problem by allowing researchers to easily compare and swap out different components of ChIP-seq, CUT&RUN, and CUT&Tag data analysis, thereby facilitating the identification of reliable analysis methodologies. Rocketchip enables researchers to efficiently process large datasets while ensuring reproducibility and allowing for the reanalysis of existing data.
View Article and Find Full Text PDFResearch resources like transgenic animals and antibodies are the workhorses of biomedicine, enabling investigators to relatively easily study specific disease conditions. As key biological resources, transgenic animals and antibodies are often validated, maintained, and distributed from university based stock centers. As these centers heavily rely largely on grant funding, it is critical that they are cited by investigators so that usage can be tracked.
View Article and Find Full Text PDFNMR is a valuable experimental tool in the structural biologist's toolkit to elucidate the structures, functions, and motions of biomolecules. The progress of machine learning, particularly in structural biology, reveals the critical importance of large, diverse, and reliable datasets in developing new methods and understanding in structural biology and science more broadly. Biomolecular NMR research groups produce large amounts of data, and there is renewed interest in organizing these data to train new, sophisticated machine learning architectures and to improve biomolecular NMR analysis pipelines.
View Article and Find Full Text PDFAntimicrobial resistance (AMR) represents a significant source of morbidity and mortality worldwide, with expectations that AMR-associated consequences will continue to worsen throughout the coming decades. Since resistance to antibiotics is encoded in the microbiome, interventions aimed at altering the taxonomic composition of the gut might allow us to prophylactically engineer microbiomes that harbor fewer antibiotic resistant genes (ARGs). Diet is one method of intervention, and yet little is known about the association between diet and antimicrobial resistance.
View Article and Find Full Text PDFThe Mutant Mouse Resource and Research Center (MMRRC) Program is the pre-eminent public national mutant mouse repository and distribution archive in the USA, serving as a national resource of mutant mice available to the global scientific community for biomedical research. Established more than two decades ago with grants from the National Institutes of Health (NIH), the MMRRC Program supports a Consortium of regionally distributed and dedicated vivaria, laboratories, and offices (Centers) and an Informatics Coordination and Service Center (ICSC) at three academic teaching and research universities and one non-profit genetic research institution. The MMRRC Program accepts the submission of unique, scientifically rigorous, and experimentally valuable genetically altered and other mouse models donated by academic and commercial scientists and organizations for deposition, maintenance, preservation, and dissemination to scientists upon request.
View Article and Find Full Text PDFGene regulatory elements are central drivers of phenotypic variation and thus of critical importance towards understanding the genetics of complex traits. The Functional Annotation of Animal Genomes consortium was formed to collaboratively annotate the functional elements in animal genomes, starting with domesticated animals. Here we present an expansive collection of datasets from eight diverse tissues in three important agricultural species: chicken (Gallus gallus), pig (Sus scrofa), and cattle (Bos taurus).
View Article and Find Full Text PDFAmong people of European descent, the ability to digest lactose into adulthood arose via strong positive selection of a highly advantageous allele encompassing the lactase gene. Lactose-tolerant and intolerant individuals may have different disease risks due to the shared genetics of their haplotype block. Therefore, the overall objective of the study was to assess the genetic association of the lactase persistence haplotype to disease risk.
View Article and Find Full Text PDFBackground: Although considerable progress has been made towards annotating the noncoding portion of the human and mouse genomes, regulatory elements in other species, such as livestock, remain poorly characterized. This lack of functional annotation poses a substantial roadblock to agricultural research and diminishes the value of these species as model organisms. As active regulatory elements are typically characterized by chromatin accessibility, we implemented the Assay for Transposase Accessible Chromatin (ATAC-seq) to annotate and characterize regulatory elements in pigs and cattle, given a set of eight adult tissues.
View Article and Find Full Text PDFNeonatal dried blood spots (NDBS) are a widely banked sample source that enables retrospective investigation into early life molecular events. Here, we performed low-pass whole genome bisulfite sequencing (WGBS) of 86 NDBS DNA to examine early life Down syndrome (DS) DNA methylation profiles. DS represents an example of genetics shaping epigenetics, as multiple array-based studies have demonstrated that trisomy 21 is characterized by genome-wide alterations to DNA methylation.
View Article and Find Full Text PDFBackground: Shotgun metagenomes are often assembled prior to annotation of genes which biases the functional capacity of a community towards its most abundant members. For an unbiased assessment of community function, short reads need to be mapped directly to a gene or protein database. The ability to detect genes in short read sequences is dependent on pre- and post-sequencing decisions.
View Article and Find Full Text PDFHuman milk oligosaccharides play a vital role in the development of the gut microbiome in the human infant. Although oligosaccharides derived from bovine milk (BMO) differ in content and profile with those derived from human milk (HMO), several oligosaccharide structures are shared between the species. BMO are commercial alternatives to HMO, but their fate in the digestive tract of healthy adult consumers is unknown.
View Article and Find Full Text PDFLactase persistence (LP) is a trait in which lactose can be digested throughout adulthood, while lactase non-persistence (LNP) can cause lactose intolerance and influence dairy consumption. One single nucleotide polymorphism (SNP ID: rs4988235) is often used as a predictor for dairy intake, since it is responsible for LP in people in European descent, and can occur in other ethnic groups. The objective of this study was to determine whether rs4988235 genotypes and ethnicity influence reported dairy consumption in the United States (U.
View Article and Find Full Text PDFBackground: Idiopathic chronic diarrhea (ICD) is a common cause of morbidity and mortality among juvenile rhesus macaques. Characterized by chronic inflammation of the colon and repeated bouts of diarrhea, ICD is largely unresponsive to medical interventions, including corticosteroid, antiparasitic, and antibiotic treatments. Although ICD is accompanied by large disruptions in the composition of the commensal gut microbiome, no single pathogen has been concretely identified as responsible for the onset and continuation of the disease.
View Article and Find Full Text PDFBackground: Numerous long non-coding RNAs (lncRNAs) have been identified and their roles in gene regulation in humans, mice, and other model organisms studied; however, far less research has been focused on lncRNAs in farm animal species. While previous studies in chickens, cattle, and pigs identified lncRNAs in specific developmental stages or differentially expressed under specific conditions in a limited number of tissues, more comprehensive identification of lncRNAs in these species is needed. The goal of the FAANG Consortium (Functional Annotation of Animal Genomes) is to functionally annotate animal genomes, including the annotation of lncRNAs.
View Article and Find Full Text PDFCollaboration among scientists has a major influence on scientific progress. Such collaboration often results from scientific meetings, where scientists gather to present and discuss their research and to meet potential collaborators. However, most scientific meetings have inherent biases, such as the availability of research funding or the selection bias of professional societies that make it difficult to study the effect of the meeting per se on scientific productivity.
View Article and Find Full Text PDFBackground: Complex microbial communities are an area of growing interest in biology. Metatranscriptomics allows researchers to quantify microbial gene expression in an environmental sample via high-throughput sequencing. Metatranscriptomic experiments are computationally intensive because the experiments generate a large volume of sequence data and each sequence must be compared with reference sequences from thousands of organisms.
View Article and Find Full Text PDFTo reveal impacts of sexual mode on genome content, we compared chromosome-scale assemblies of the outcrossing nematode to its self-fertile sibling species, 's genome resembles that of outcrossing relatives but encodes 31% more protein-coding genes than genes lacking orthologs were disproportionately small and male-biased in expression. These include the () gene family, which encodes sperm surface glycoproteins conserved only in outcrossing species. Sperm from -null males of outcrossing failed to compete with wild-type sperm, despite normal fertility in noncompetitive mating.
View Article and Find Full Text PDFTrisomy and triploidy, defined as the presence of a third copy of one or all chromosomes, respectively, are deleterious in many species including humans. Previous studies have demonstrated that with a third copy of the X chromosome are viable and fertile. However, the extra X chromosome was shown to preferentially segregate into the first polar body during oocyte meiosis to produce a higher frequency of euploid offspring than would be generated by random segregation.
View Article and Find Full Text PDFLettuce (Lactuca sativa) is a major crop and a member of the large, highly successful Compositae family of flowering plants. Here we present a reference assembly for the species and family. This was generated using whole-genome shotgun Illumina reads plus in vitro proximity ligation data to create large superscaffolds; it was validated genetically and superscaffolds were oriented in genetic bins ordered along nine chromosomal pseudomolecules.
View Article and Find Full Text PDFEarly embryonic stages of pluripotency are modeled for epigenomic studies primarily with human embryonic stem cells (ESC) or induced pluripotent stem cells (iPSCs). For analysis of DNA methylation however, ESCs and iPSCs do not accurately reflect the DNA methylation levels found in preimplantation embryos. Whole genome bisulfite sequencing (WGBS) approaches have revealed the presence of large partially methylated domains (PMDs) covering 30%-40% of the genome in oocytes, preimplantation embryos, and placenta.
View Article and Find Full Text PDF