Publications by authors named "Ian Jennions"

Complex systems involve monitoring, assessing, and predicting the health of various systems within an integrated vehicle health management (IVHM) system or a larger system. Health management applications rely on sensors that generate useful information about the health condition of the assets; thus, optimising the sensor network quality while considering specific constraints is the first step in assessing the condition of assets. The optimisation problem in sensor networks involves considering trade-offs between different performance metrics.

View Article and Find Full Text PDF

Fault diagnosis of rotating machines is an important task to prevent machinery downtime, and provide verifiable support for condition-based maintenance (CBM) decision-making. Deep learning-enabled fault diagnosis operations have become increasingly popular because features are extracted and selected automatically. However, it is challenging for these models to give superior results with rotating machine components of different scales, single and multiple faults across different rotating components, diverse operating speeds, and diverse load conditions.

View Article and Find Full Text PDF

In this paper, the development and implementation of a novel approach for fault detection of an aircraft auxiliary power unit (APU) has been demonstrated. The developed approach aims to target the proactive identification of faults, in order to streamline the required maintenance and maximize the aircraft's operational availability. The existing techniques rely heavily on the installation of multiple types of intrusive sensors throughout the APU and therefore present a limited potential for deployment on an actual aircraft due to space constraints, accessibility issues as well as associated development and certification requirements.

View Article and Find Full Text PDF

Bearings are critical components found in most rotating machinery; their health condition is of immense importance to many industries. The varied conditions and environments in which bearings operate make them prone to single and multiple faults. Widespread interest in the improvements of single fault diagnosis meant limited attention was spent on multiple fault diagnosis.

View Article and Find Full Text PDF

Predictive maintenance is increasingly advancing into the aerospace industry, and it comes with diverse prognostic health management solutions. This type of maintenance can unlock several benefits for aerospace organizations. Such as preventing unexpected equipment downtime and improving service quality.

View Article and Find Full Text PDF

The automobile industry no longer relies on pure mechanical systems; instead, it benefits from many smart features based on advanced embedded electronics. Although the rise in electronics and connectivity has improved comfort, functionality, and safe driving, it has also created new attack surfaces to penetrate the in-vehicle communication network, which was initially designed as a close loop system. For such applications, the Controller Area Network (CAN) is the most-widely used communication protocol, which still suffers from various security issues because of the lack of encryption and authentication.

View Article and Find Full Text PDF

The final phase of powder production typically involves a mixing process where all of the particles are combined and agglomerated with a binder to form a single compound. The traditional means of inspecting the physical properties of the final product involves an inspection of the particle sizes using an offline sieving and weighing process. The main downside of this technique, in addition to being an offline-only measurement procedure, is its inability to characterise large agglomerates of powders due to sieve blockage.

View Article and Find Full Text PDF