Acta Crystallogr D Struct Biol
March 2024
The validation of structural models obtained by macromolecular X-ray crystallography against experimental diffraction data, whether before deposition into the PDB or after, is typically carried out exclusively against the merged data that are eventually archived along with the atomic coordinates. It is shown here that the availability of unmerged reflection data enables valuable additional analyses to be performed that yield improvements in the final models, and tools are presented to implement them, together with examples of the results to which they give access. The first example is the automatic identification and removal of image ranges affected by loss of crystal centering or by excessive decay of the diffraction pattern as a result of radiation damage.
View Article and Find Full Text PDFUnlabelled: Marburg virus (MARV) is a highly pathogenic filovirus that is classified in a genus distinct from that of Ebola virus (EBOV) (genera Marburgvirus and Ebolavirus, respectively). Both viruses produce a multifunctional protein termed VP35, which acts as a polymerase cofactor, a viral protein chaperone, and an antagonist of the innate immune response. VP35 contains a central oligomerization domain with a predicted coiled-coil motif.
View Article and Find Full Text PDFGaining an understanding of the protein-ligand complex structure along with the proper protonation and explicit solvent effects can be important in obtaining meaningful results in structure-guided drug discovery and structure-based drug discovery. Unfortunately, protonation and tautomerism are difficult to establish with conventional methods because of difficulties in the experimental detection of H atoms owing to the well known limitations of X-ray crystallography. In the present work, it is demonstrated that semiempirical, quantum-mechanics-based macromolecular crystallographic refinement is sensitive to the choice of a protonation-state/tautomer form of ligands and residues, and can therefore be used to explore potential states.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2015
Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate.
View Article and Find Full Text PDFThe protein Keap1 is central to the regulation of the Nrf2-mediated cytoprotective response, and is increasingly recognized as an important target for therapeutic intervention in a range of diseases involving excessive oxidative stress and inflammation. The BTB domain of Keap1 plays key roles in sensing environmental electrophiles and in mediating interactions with the Cul3/Rbx1 E3 ubiquitin ligase system, and is believed to be the target for several small molecule covalent activators of the Nrf2 pathway. However, despite structural information being available for several BTB domains from related proteins, there have been no reported crystal structures of Keap1 BTB, and this has precluded a detailed understanding of its mechanism of action and interaction with antagonists.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
April 2012
The commonly used validation metrics for the local agreement of a structure model with the observed electron density, namely the real-space R (RSR) and the real-space correlation coefficient (RSCC), are reviewed. It is argued that the primary goal of all validation techniques is to verify the accuracy of the model, since precision is an inherent property of the crystal and the data. It is demonstrated that the principal weakness of both of the above metrics is their inability to distinguish the accuracy of the model from its precision.
View Article and Find Full Text PDFThis report presents the conclusions of the X-ray Validation Task Force of the worldwide Protein Data Bank (PDB). The PDB has expanded massively since current criteria for validation of deposited structures were adopted, allowing a much more sophisticated understanding of all the components of macromolecular crystals. The size of the PDB creates new opportunities to validate structures by comparison with the existing database, and the now-mandatory deposition of structure factors creates new opportunities to validate the underlying diffraction data.
View Article and Find Full Text PDFThe fragment-based approach is now well established as an important component of modern drug discovery. A key part in establishing its position as a viable technique has been the development of a range of biophysical methodologies with sufficient sensitivity to detect the binding of very weakly binding molecules. X-ray crystallography was one of the first techniques demonstrated to be capable of detecting such weak binding, but historically its potential for screening was under-appreciated and impractical due to its relatively low throughput.
View Article and Find Full Text PDFStructural biology, homology modelling and rational drug design require accurate three-dimensional macromolecular coordinates. However, the coordinates in the Protein Data Bank (PDB) have not all been obtained using the latest experimental and computational methods. In this study a method is presented for automated re-refinement of existing structure models in the PDB.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2009
The cyclin D1-cyclin-dependent kinase 4 (CDK4) complex is a key regulator of the transition through the G(1) phase of the cell cycle. Among the cyclin/CDKs, CDK4 and cyclin D1 are the most frequently activated by somatic genetic alterations in multiple tumor types. Thus, aberrant regulation of the CDK4/cyclin D1 pathway plays an essential role in oncogenesis; hence, CDK4 is a genetically validated therapeutic target.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
December 2007
A number of inconsistencies are apparent in the recent research paper by Jaskolski et al. [(2007), Acta Cryst. D63, 611-620] concerning their recommendations for the values of the magnitude and resolution-dependence of the root-mean-square deviations (RMSDs) of bond lengths and angles from their restrained ideal values in macromolecular refinement, as well as their suggestions for the use of variable standard uncertainties dependent on atomic displacement parameters (ADPs) and occupancies.
View Article and Find Full Text PDFAn approach to automate protein-ligand crystallography is presented, with the aim of increasing the number of structures available to structure-based drug design. The methods we propose deal with the automatic interpretation of diffraction data for targets with known protein structures, and provide easy access to the results. Central to the system is a novel procedure that fully automates the placement of ligands into electron density maps.
View Article and Find Full Text PDFCytochromes P450 (P450s) metabolize a wide range of endogenous compounds and xenobiotics, such as pollutants, environmental compounds, and drug molecules. The microsomal, membrane-associated, P450 isoforms CYP3A4, CYP2D6, CYP2C9, CYP2C19, CYP2E1, and CYP1A2 are responsible for the oxidative metabolism of more than 90% of marketed drugs. Cytochrome P450 3A4 (CYP3A4) metabolizes more drug molecules than all other isoforms combined.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
September 2003
The estimation of weights is quite an important aspect of the restrained refinement of macromolecular structures and related procedures such as the estimation of coordinate errors and structure validation using geometrical criteria. In principle, the method of maximum likelihood can be used for estimation of both atomic and weighting parameters. However, the low observation-to-parameter ratio in macromolecular refinement makes this kind of estimate of weighting parameters seriously biased; thus, the weighting parameters have traditionally been estimated separately from atomic parameters using a special technique, such as minimizing the free R factor.
View Article and Find Full Text PDFMany proteins undergo small side chain or even backbone movements on binding of different ligands into the same protein structure. This is known as induced fit and is potentially problematic for virtual screening of databases against protein targets. In this report we investigate the limits of the rigid protein approximation used by the docking program, GOLD, through cross-docking using protein structures of influenza neuraminidase.
View Article and Find Full Text PDFWith the aim of enhancing interactions involved in dimer formation, an intersubunit disulfide bridge was engineered in the superoxide dismutase enzyme of Mycobacterium tuberculosis. Ser-123 was chosen for mutation to cysteine since it resides at the dimer interface where the serine side chain interacts with the same residue in the opposite subunit. Gel electrophoresis and X-ray crystallographic studies of the expressed mutant confirmed formation of the disulfide bond under nonreducing conditions.
View Article and Find Full Text PDF