Publications by authors named "Ian J Leslie"

Ceramic-on-ceramic (CoC) bearings in total hip replacements (THRs) have shown low wear volumes under standard gait in hip simulator studies. However, clinical reports have indicated variations in wear rates and formation of stripe-like wear area on the ceramic femoral heads. The aim of this study was to investigate the influence of cup inclination angle and microseparation on the wear of CoC bearings in THRs.

View Article and Find Full Text PDF

Humans are exposed to chromium and cobalt in industry, from the environment and after joint replacement surgery from the CoCr alloy in the implant. In this study we have investigated whether Cr(III), Cr(VI), Co(II) and Cr in combination with Co could induce chromosome aberrations in human fibroblasts in vitro at the same concentrations that have been found in the peripheral blood of exposed humans. We used 24 colour M-FISH as a sensitive way to detect translocations and aneuploidy and examined the effects of a 24-h exposure and its consequences up to 30 days after the exposure in order to record genomic instability and/or repair.

View Article and Find Full Text PDF

High wear rates and high patient ion levels have been associated with high (> 55 degrees) cup inclination angles for metal-on-metal surface replacements. Wear rates and patterns have been simulated for ceramic-on-ceramic bearings by applying microseparation to replicate head offset deficiency. We tested 39-mm metal-on-metal surface replacements (n = 5) in a hip simulator with (A) an increased cup inclination angle of 60 degrees and (B) an increased cup inclination angle and microseparation over 2 million cycles.

View Article and Find Full Text PDF

Increased patient blood and serum levels of Co and Cr and dissemination of metal wear particles throughout organs and tissues are the primary concerns with metal-on-metal surface replacements. Surface engineering, providing a ceramic bearing surface on a metal substrate, could provide a solution. This study investigated thick (>10 microm) arc evaporation plasma vapor deposition chromium nitride (CrN) coated surface replacements in terms of wear, ion levels, and wear particles in a 10 million cycle hip simulator study, compared to a contemporary metal-on-metal surface replacement.

View Article and Find Full Text PDF