Background: Left ventricular (LV) global longitudinal strain (GLS) has been proposed as an early imaging biomarker of cardiac mechanical dysfunction.
Objective: To assess the impact of angiotensin-converting enzyme (ACE) inhibitor treatment of hypertensive heart disease on LV GLS and mechanical function.
Methods: The spontaneously hypertensive rat (SHR) model of hypertensive heart disease ( n = 38) was studied.
Hypertensive heart disease (HHD) increases risk of ventricular tachycardia (VT) and ventricular fibrillation (VF). The roles of structural vs. electrophysiological remodelling and age vs.
View Article and Find Full Text PDFAtrial fibrillation (AF) is the most common cardiac dysrhythmia and percutaneous catheter ablation is widely used to treat it. Panoramic mapping with multi-electrode catheters has been used to identify ablation targets in persistent AF but is limited by poor contact and inadequate coverage of the left atrial cavity. In this paper, we investigate the accuracy with which atrial endocardial surface potentials can be reconstructed from electrograms recorded with non-contact catheters.
View Article and Find Full Text PDFThe complex and highly organized structural arrangement of some five billion cardiomyocytes directs the coordinated electrical activity and mechanical contraction of the human heart. The characteristic transmural change in cardiomyocyte orientation underlies base-to-apex shortening, circumferential shortening, and left ventricular torsion during contraction. Individual cardiomyocytes shorten ∼15% and increase in diameter ∼8%.
View Article and Find Full Text PDFAtrial fibrillation (AF) is the most prevalent cardiac dysrhythmia and percutaneous catheter ablation is widely used to treat it. Panoramic mapping with multi-electrode catheters can identify ablation targets in persistent AF, but is limited by poor contact and inadequate coverage. To investigate the accuracy of inverse mapping of endocardial surface potentials from electrograms sampled with noncontact basket catheters.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
August 2021
Detailed global maps of atrial electrical activity are needed to understand mechanisms of atrial rhythm disturbance in small animal models of heart disease. To date, optical mapping systems have not provided enough spatial resolution across sufficiently extensive regions of intact atrial preparations to achieve this goal. The aim of this study was to develop an integrated platform for quantifying regional electrical properties and analyzing reentrant arrhythmia in a biatrial preparation.
View Article and Find Full Text PDFThe conduit network is a hallmark of lymph node microanatomy, but lack of suitable imaging technology has prevented comprehensive investigation of its topology. We employed an extended-volume imaging system to capture the conduit network of an entire murine lymph node (comprising over 280,000 segments). The extensive 3D images provide a comprehensive overview of the regions supplied by conduits, including perivascular sleeves and distinctive "follicular reservoirs" within B cell follicles, surrounding follicular dendritic cells.
View Article and Find Full Text PDFTesting new therapies in heart failure (HF) requires a chronic stable model of HF in large animals. Microembolization of the coronary arteries has been used to model HF previously; however, neural control has not been previously explored in this model. Thus the aim of this study was to further characterize neural control in this model of HF.
View Article and Find Full Text PDFHeart failure (HF) is one of the leading causes of death worldwide. HF is associated with substantial microstructural remodeling, which is linked to changes in left ventricular geometry and impaired cardiac function. The role of myocardial remodeling in altering the mechanics of failing hearts remains unclear.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
October 2019
Altered electrical behavior alongside healed myocardial infarcts (MIs) is associated with increased risk of sudden cardiac death. However, the multidimensional mechanisms are poorly understood and described. This study characterizes, for the first time, the intramural spread of electrical activation in the peri-infarct region of chronic reperfusion MIs.
View Article and Find Full Text PDFKey Points: Vagal reflexes slow heart rate and can change where the heartbeat originates within the sinoatrial node (SAN). The mechanisms responsible for this process - termed leading pacemaker (LP) shift - have not been investigated fully. We used optical mapping to measure the effects of baroreflex, chemoreflex and carbachol on pacemaker entrainment and electrical conduction across the SAN.
View Article and Find Full Text PDFBuilding anatomically accurate models of the coronary vascular system enables potentially deeper understandings of coronary circulation. To achieve this, (a) images at different levels of vascular network-arteries, arterioles, capillaries, venules, and veins-need to be obtained through suitable imaging modalities; and (b) from images, morphological and topological information needs to be extracted using image processing techniques. While there are several modalities that enable the imaging of large vessels, microcirculation imaging-capturing vessels having diameter lesser than 100 μm-has to date been typically confined to small regions of the heart.
View Article and Find Full Text PDFCirc Arrhythm Electrophysiol
May 2018
Background: Inverse electrocardiographic mapping reconstructs cardiac electrical activity from recorded body surface potentials. This noninvasive technique has been used to identify potential ablation targets. Despite this, there has been little systematic evaluation of its reliability.
View Article and Find Full Text PDFIntroduction: Extracellular potentials measured on the heart surfaces are used to infer events that originate deep within the heart wall. We have reconstructed intramural potentials in three dimensions for the first time, and compare these with epicardial and endocardial surface potentials and cardiac microstructure.
Methods And Results: Extracellular potentials from intramural point stimulation were measured from a high density 3-D electrode array in the in vivo pig LV.
The spontaneously hypertensive rat (SHR) is an established model of human hypertensive heart disease transitioning into heart failure. The study of the progression to heart failure in these animals has been limited by the lack of longitudinal data. We used MRI to quantify left ventricular mass, volume, and cardiac work in SHRs at age 3 to 21 month and compared these indices to data from Wistar-Kyoto (WKY) controls.
View Article and Find Full Text PDFUnderstanding of the microvasculature has previously been limited by the lack of methods capable of capturing and modelling complete vascular networks. We used novel imaging and computational techniques to establish the topology of the entire blood vessel network of a murine lymph node, combining 63,706 confocal images at 2 μm pixel resolution to cover a volume of 3.88 mm(3).
View Article and Find Full Text PDFBackground: Cardiovascular magnetic resonance (CMR) can through the two methods 3D FLASH and diffusion tensor imaging (DTI) give complementary information on the local orientations of cardiomyocytes and their laminar arrays.
Methods: Eight explanted rat hearts were perfused with Gd-DTPA contrast agent and fixative and imaged in a 9.4T magnet by two types of acquisition: 3D fast low angle shot (FLASH) imaging, voxels 50 × 50 × 50 μm, and 3D spin echo DTI with monopolar diffusion gradients of 3.
Background: The relationship between epicardial and body surface potentials defines the forward problem of electrocardiography. A robust formulation of the forward problem is instrumental to solving the inverse problem, in which epicardial potentials are computed from known body surface potentials. Here, the accuracy of different forward models has been evaluated experimentally.
View Article and Find Full Text PDFOptical mapping, with membrane-bound, voltage-sensitive dyes, is widely used for in vitro recording of cardiac electrical activity. The spatial registration of such maps is lost when the heart moves with respect to a fixed photodetector array and contraction can generate substantial artifact if background fluorescence is not uniformly distributed. While motion artifact is commonly suppressed with electromechanical uncoupling agents, there are circumstances where these are undesirable.
View Article and Find Full Text PDFTransmural variations in the relationship between structural and fluid transport properties of myocardial capillary networks are determined via continuum modeling approaches using recent three-dimensional (3D) data on the microvascular structure. Specifically, the permeability tensor, which quantifies the inverse of the blood flow resistivity of the capillary network, is computed by volume-averaging flow solutions in synthetic networks with geometrical and topological properties derived from an anatomically-detailed microvascular data set extracted from the rat myocardium. Results show that the permeability is approximately ten times higher in the principal direction of capillary alignment (the "longitudinal" direction) than perpendicular to this direction, reflecting the strong anisotropy of the microvascular network.
View Article and Find Full Text PDFAbstract It is generally recognized that increased consumption of polyunsaturated fatty acids, fish oil (FO) in particular, is beneficial to cardiac and cardiovascular health, whereas equivalent consumption of saturated fats is deleterious. In this study, we explore this divergence, adopting a limited purview: The effect of dietary fatty acids on the mechanoenergetics of the isolated heart per se. Mechanical indices of interest include left-ventricular (LV) developed pressure, stroke work, cardiac output, coronary perfusion, and LV power.
View Article and Find Full Text PDFNumerous epidemiological studies, supported by clinical and experimental findings, have suggested beneficial effects of dietary fish or fish oil supplementation on cardiovascular health. One such experimental study showed a profound (100%) increase in myocardial efficiency (i.e.
View Article and Find Full Text PDFVagal nerve activity has been shown to play a role in the formation and maintenance of atrial fibrillation (AF). Nerves on the atria are now increasingly being targeted using ablation-based therapies for the treatment of paroxysmal AF. In vivo, changes in vagal activity are part of an integrated autonomic profile that invariably involves accompanying modulations in sympathetic activity.
View Article and Find Full Text PDFIntroduction: More effective methods for characterizing 3D electrical activity in human left atrium (LA) are needed to identify substrates/triggers and microreentrant circuit for paroxysmal atrial fibrillation (PAF). We describe a novel wavelet-based approach and wave-front centroid tracking that have been used to reconstruct regional activation frequency and electrical activation pathways from non-contact multi-electrode array.
Methods: Data from 13 patients acquired prior to ablation for PAF with a 64 electrode noncontact catheter positioned in the LA were analysed.