J Anim Ecol
September 2024
Aquatic birds are notable among the global avifauna for living in environments exposed to large amounts of light. Despite growing evidence that visual adaptations to light underly the ecology and evolution of the avian tree of life, no comprehensive comparative analysis of visual acuity as approximated by eyes size exists for the global aquatic avifauna. Here, I use Stanley Ritland's unpublished dataset of measurements for axial length collected from museum specimens to explore the ecology and evolution of eye size variation for half of the aquatic avifauna (N = 464 species).
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
June 2023
Anthropogenic disturbance contributes to global change by reshaping the ecological niche space available to biological communities. Quantifying the range of functional response traits required for species persistence is central towards understanding the mechanisms underlying community disassembly in disturbed landscapes. We used intensive field surveys of cloud forest bird communities across seven replicate landscapes undergoing agricultural conversion in the Peruvian Andes to examine how a suite of 16 functional response traits related to morphology, diet, foraging behaviour and environmental niche breadth predict (1) species-specific abundance changes in countryside habitats compared to forest and (2) differential changes to the ecological niche space occupied by communities.
View Article and Find Full Text PDFWarming temperatures are increasing rainfall extremes, yet arthropod responses to climatic fluctuations remain poorly understood. Here, we used spatiotemporal variation in tropical montane climate as a natural experiment to compare the importance of biotic versus abiotic drivers in regulating arthropod biomass. We combined intensive field data on arthropods, leaf phenology and in situ weather across a 1700-3100 m elevation and rainfall gradient, along with desiccation-resistance experiments and multi-decadal modelling.
View Article and Find Full Text PDFIn coevolutionary arms-races, reciprocal ecological interactions and their fitness impacts shape the course of phenotypic evolution. The classic example of avian host-brood parasite interactions selects for host recognition and rejection of increasingly mimetic foreign eggs. An essential component of perceptual mimicry is that parasitic eggs escape detection by host sensory systems, yet there is no direct evidence that the avian visual system covaries with parasitic egg recognition or mimicry.
View Article and Find Full Text PDFThe role of light in structuring the ecological niche remains a frontier in understanding how vertebrate communities assemble and respond to global change. For birds, eyes represent the primary external anatomical structure specifically evolved to interpret light, yet eye morphology remains understudied compared to movement and dietary traits. Here, I use Stanley Ritland's unpublished measurements of transverse eye diameter from preserved specimens to explore the ecological and phylogenetic drivers of eye morphology for a third of terrestrial avian diversity ( = 2777 species).
View Article and Find Full Text PDFParent-offspring conflict has explained a variety of ecological phenomena across animal taxa, but its role in mediating when songbirds fledge remains controversial. Specifically, ecologists have long debated the influence of songbird parents on the age of fledging: Do parents manipulate offspring into fledging to optimize their own fitness or do offspring choose when to leave? To provide greater insight into parent-offspring conflict over fledging age in songbirds, we compared nesting and postfledging survival rates across 18 species from eight studies in the continental United States. For 12 species (67%), we found that fledging transitions offspring from comparatively safe nesting environments to more dangerous postfledging ones, resulting in a postfledging bottleneck.
View Article and Find Full Text PDFThe role of light in partitioning ecological niche space remains a frontier in understanding the assembly of terrestrial vertebrate communities and their response to global change. Leveraging recent advances in biologging technology and intensive field surveys of cloud forest bird communities across an agricultural land use gradient in the Peruvian Andes, we demonstrate that eye size predicts (1) the ambient light microenvironment used by free-ranging birds, (2) their foraging niche, and (3) species-specific sensitivity to agricultural land use change. For 15 species carrying light sensors (N = 71 individuals), light intensity levels were best explained by eye size and foraging behavior, with larger-eyed species using darker microenvironments.
View Article and Find Full Text PDF