Fabricating freeform mirrors relies on accurate optical figuring processes capable of arbitrarily modifying low-spatial frequency height without creating higher-spatial frequency errors. We present a scalable process to accurately figure thin mirrors using stress generated by a focused ultrafast laser. We applied ultrafast laser stress figuring (ULSF) to four thin fused silica mirrors to correct them to 10-20 nm RMS over 28 Zernike terms, in 2-3 iterations, without significantly affecting higher-frequency errors.
View Article and Find Full Text PDFCommercially available supercontinuum light sources that cover most of the solar spectrum are well suited for instrumentation, where a well-collimated beam with wide spectral coverage is needed. Typically, the optical power is emitted from a single-mode photonic-crystal fiber and the output can either be collimated using a proprietary, permanently integrated, lens-based collimator or with a customer-provided, off-axis parabolic mirror. Here, we evaluate both approaches and conclude that, superior beam quality and collimation over the whole spectral range can be obtained with an off-axis parabolic mirror, however at the price of a more complex and bulky system requiring additional user alignment.
View Article and Find Full Text PDF