Signaling by growth factor receptor tyrosine kinases is manifest through networks of proteins that are substrates and/or bind to the activated receptors. FGF receptor-3 (FGFR3) is a drug target in a subset of human multiple myelomas (MM) and is mutationally activated in some cervical and colon and many bladder cancers and in certain skeletal dysplasias. To define the FGFR3 network in multiple myeloma, mass spectrometry was used to identify and quantify phosphotyrosine (pY) sites modulated by FGFR3 activation and inhibition in myeloma-derived KMS11 cells.
View Article and Find Full Text PDFLiquid chromatography-mass spectrometry (LC-MS)-based proteomics is becoming an increasingly important tool in characterizing the abundance of proteins in biological samples of various types and across conditions. Effects of disease or drug treatments on protein abundance are of particular interest for the characterization of biological processes and the identification of biomarkers. Although state-of-the-art instrumentation is available to make high-quality measurements and commercially available software is available to process the data, the complexity of the technology and data presents challenges for bioinformaticians and statisticians.
View Article and Find Full Text PDFMapping protein-protein interactions is an invaluable tool for understanding protein function. Here, we report the first large-scale study of protein-protein interactions in human cells using a mass spectrometry-based approach. The study maps protein interactions for 338 bait proteins that were selected based on known or suspected disease and functional associations.
View Article and Find Full Text PDFThe ability to quantitatively compare protein levels across different regions of the brain to identify disease mechanisms remains a fundamental research challenge. It requires both a robust method to efficiently isolate proteins from small amounts of tissue and a differential technique that provides a sensitive and comprehensive analysis of these proteins. Here, we describe a proteomic approach for the quantitative mapping of membrane proteins between mouse fore- and hindbrain regions.
View Article and Find Full Text PDFAlthough HPLC-ESI-MS/MS is rapidly becoming an indispensable tool for the analysis of peptides in complex mixtures, the sequence coverage it affords is often quite poor. Low protein expression resulting in peptide signal intensities that fall below the limit of detection of the MS system in combination with differences in peptide ionization efficiency plays a significant role in this. A second important factor stems from differences in physicochemical properties of each peptide and how these properties relate to chromatographic retention and ultimate detection.
View Article and Find Full Text PDFAn in-depth study of the reproducibility of data acquired for comparative proteomics analysis using a prototype two-stage heated laminar flow chamber fitted to a commercial high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) instrument was undertaken. The study is based on 24 replicate samples from four independent membrane preparations derived from two matched breast cancer cell lines. Variation and reproducibility in the data were evaluated at several levels highlighting the relative efficiency and variability of the acquisition routines used.
View Article and Find Full Text PDF