Publications by authors named "Ian Hodge"

Eight rumen additives were chosen for an enteric methane-mitigating comparison study including garlic oil (GO), nitrate, (AN), (ASP), (LAB), chitosan (CHI), essential oils (EOs) and 3-nitrooxypropanol (3-NOP). Dose-dependent analysis was carried out on selected feed additives using a meta-analysis approach to determine effectiveness in live subjects or potential efficacy in live animal trials with particular attention given to enteric gas, volatile fatty acid concentrations, and rumen microbial counts. All meta-analysis involving additives GO, nitrates, LAB, CHI, EOs, and 3-NOP revealed a reduction in methane production, while individual studies for AN and ASP displayed ruminal bacterial community improvement and a reduction in enteric CH.

View Article and Find Full Text PDF

This paper analyses two strategies to reduce the use of pesticides in grain production. We study Norwegian farmers' willingness to voluntarily forego income by reducing pesticide use as well as their responses to a doubling of the pesticide price (through increased pesticide taxes). We use mixed methods including an experiment, a survey and focus group discussions.

View Article and Find Full Text PDF

Europe is a region of relatively high population density and productive agriculture subject to substantial government intervention under the Common Agricultural Policy (CAP). Many habitats and species of high conservation interest have been created by the maintenance of agricultural practices over long periods. These practices are often no longer profitable, and nature conservation initiatives require government support to cover the cost for them to be continued.

View Article and Find Full Text PDF

Numerical simulations indicate that neglecting the canonical nonlinearity of glassy-state annealing kinetics in pharmaceutical (and other) glasses leads to good KWW fits to the dependence of enthalpy on annealing time, but with spurious KWW parameters that are affected by nonlinearity. A simplified treatment of nonlinearity that uses the Struik shift factor is found to be a useful approximation for these analyses, and can account for previously reported differences between linear and nonlinear KWW parameters (Kawakami K, Pikal MJ. 2005.

View Article and Find Full Text PDF

The continued growth of human populations and of per capita consumption have resulted in unsustainable exploitation of Earth's biological diversity, exacerbated by climate change, ocean acidification, and other anthropogenic environmental impacts. We argue that effective conservation of biodiversity is essential for human survival and the maintenance of ecosystem processes. Despite some conservation successes (especially at local scales) and increasing public and government interest in living sustainably, biodiversity continues to decline.

View Article and Find Full Text PDF

This research constitutes a thorough study of the relationship between the chemical stability, aging state and global molecular motion on the one hand, and microscopic local mobility in multi-component systems on the other hand. The objective of the present work was to determine whether annealing a glass below T(g) affects its chemical stability and determine if the rate of chemical degradation couples with global relaxation times determined using calorimetery, and/or with T(1) and T(1rho) relaxation times measured using ssNMR. Model compounds chosen for this research were lyophilized aspartame/sucrose and aspartame/trehalose (1:10 w/w) formulations.

View Article and Find Full Text PDF

The purpose of this research was to investigate the effect of annealing on the molecular mobility in lyophilized glasses using differential scanning calorimetry (DSC) and isothermal microcalorimetry (IMC) techniques. A second objective that emerged was a systematic study of the unusual pre-T(g) thermal events that were observed during DSC warming scans after annealing. Aspartame lyophilized with three different excipients; sucrose, trehalose and poly vinyl pyrrolidone (PVP) was studied.

View Article and Find Full Text PDF

The overall objective of these studies was to investigate, by experimental studies and theoretical analysis, the optimum annealing conditions to obtain maximum structural relaxation in lyophilized glasses of pharmaceutical significance. The model formulations used in this work were aspartame: sucrose and aspartame: trehalose (1:10 w/w) freeze-dried glasses. In this article, structural relaxation in amorphous systems was described in terms of the change in the fictive temperature (T(f)) and was measured using the enthalpy relaxation endotherm in a differential scanning calorimeter (DSC).

View Article and Find Full Text PDF

The nonlinear thermorheologically complex Adam Gibbs (extended "Scherer-Hodge") model for the glass transition is applied to enthalpy relaxation data reported by Sartor, Mayer, and Johari for hydrated methemoglobin. A sensible range in values for the average localized activation energy is obtained (100-200 kJ mol(-1)). The standard deviation in the inferred Gaussian distribution of activation energies, computed from the reported KWW beta-parameter, is approximately 30% of the average, consistent with the suggestion that some relaxation processes in hydrated proteins have exceptionally low activation energies.

View Article and Find Full Text PDF

A distribution of activation energies is introduced into the nonlinear Adam-Gibbs ("Hodge-Scherer") phenomenology for structural relaxation. The resulting dependencies of the stretched exponential beta parameter on thermodynamic temperature and fictive temperature (nonlinear thermorheological complexity) are derived. No additional adjustable parameters are introduced, and contact is made with the predictions of the random first-order transition theory of aging of Lubchenko and Wolynes [J.

View Article and Find Full Text PDF

The entropically based nonlinear Adam-Gibbs equation is discussed in the context of phenomenologies for nonlinear enthalpy relaxation within the glass transition temperature range. In many materials for which adequate data are available, the nonlinear Adam-Gibbs parameters are physically reasonable and agree with those obtained from linear relaxation data and thermodynamic extrapolations. Observed correlations between the traditional Tool-Narayanaswamy-Moynihan parameters are rationalized in terms of the Adam-Gibbs primary activation energy (Δ) determining how close the kinetic glass transition temperature can get to the thermodynamic Kauzmann temperature.

View Article and Find Full Text PDF