The management of bacterial wounds presents a significant challenge in the field of medicine and poses a grave threat to public health. Traditional gauze materials exhibit limited efficacy in treating bacterial infection wounds, while antibiotics demonstrate cytotoxicity and resistance. Therefore, in this study, the peptide biomimetic polymer (PAL-BA) was designed and served as the antibacterial framework for constructing an antibiotic drug-free antibacterial hydrogel dressing through a Schiff base reaction with oxidized hyaluronic acid (OHA).
View Article and Find Full Text PDFA series of tripodal (three-arm) lysine-based peptides were designed and synthesized and their self-assembly properties in aqueous solution and antimicrobial activity were investigated. We compare the behaviors of homochiral tripodal peptides (KKY)K and a homologue containing the bulky aromatic fluorenylmethoxycarbonyl (Fmoc) group Fmoc-(KKY)K, and heterochiral analogues containing k (d-Lys), (kkY)K and Fmoc-(kkY)K. The molecular conformation and self-assembly in aqueous solutions were probed using various spectroscopic techniques, along with small-angle X-ray scattering (SAXS) and cryogenic-transmission electron microscopy (cryo-TEM).
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Short bioactive peptide sequences are of great interest in biomaterials development. We investigate the self-assembly of a lipopeptide containing both the highly cationic CSK toll-like receptor agonist hexapeptide sequence and RGDS integrin-binding motif, i.e.
View Article and Find Full Text PDFPeptide-polymer systems hold strong potential for applications in nanotherapeutics. Desmopressin, a synthetic analogue of the antidiuretic hormone arginine vasopressin, may serve as a valuable case of study in this context since it is a first-line treatment for disorders affecting water homeostasis, including diabetes insipidus. It also has an established use as a hemostatic agent in von Willebrand disease, and recently, its repurposing has been suggested as a neoadjuvant in the treatment of certain types of cancer.
View Article and Find Full Text PDFBiomacromolecules
November 2024
The interaction of the surfactant-like peptide (SLP) RL bearing three cationic arginine residues with model liposomes is investigated in aqueous solution at various pH values, under conditions for which the SLP self-assembles into nanotubes. The structure of liposomes of model anionic lipid DPPG [1,2-dipalmitoyl--glycero-3-phospho-rac-(1-glycerol)], or zwitterionic lipid DPPE [1,2-dipalmitoyl--glycero-3-phosphoethanolamine] is probed using small-angle X-ray scattering and cryogenic-transmission electron microscopy. The unilamellar vesicles of DPPG are significantly restructured in the presence of RL, especially at low pH, and multilamellar vesicles of DPPE are also restructured under these conditions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
The self-assembly of lipopeptide (peptide amphiphile) molecules bearing single linear lipid chains has been widely studied, as has their diverse range of bioactivities. Here, we introduce lipopeptides bearing one or two cycloalkane chains (cycloheptadecyl or cyclododecyl) conjugated to the collagen-stimulating pentapeptide KTTKS used in Matrixyl formulations. The self-assembly of all four molecules is probed using fluorescence probe measurements to detect the critical aggregation concentration (CAC), and cryogenic-TEM and small-angle X-ray scattering (SAXS) to image the nanostructure.
View Article and Find Full Text PDFWe examine the effect of alpha-cyclodextrin (αCD) on the crystallization of poly(ethylene glycol) (PEG) [poly(ethylene oxide), PEO] in low-molar-mass polymers, with = 1000, 3000, or 6000 g mol. Differential scanning calorimetry (DSC) and simultaneous synchrotron small-/wide-angle X-ray scattering (SAXS/WAXS) show that crystallization of PEG is suppressed by αCD, provided that the cyclodextrin content is sufficient. The PEG crystal structure is replaced by a hexagonal mesophase of αCD-threaded polymer chains.
View Article and Find Full Text PDFLipopeptides can self-assemble into diverse nanostructures which can be programmed to incorporate peptide sequences to achieve a remarkable range of bioactivities. Here, the influence of peptide sequence and chirality on micelle structure and interactions is investigated in a series of lipopeptides bearing two lysine or D-lysine residues and tyrosine or tryptophan residues, attached to a hexadecyl lipid chain. All molecules self-assemble into micelles above a critical micelle concentration (CMC).
View Article and Find Full Text PDFThe simple (self-)coacervation of the minimal tryptophan/arginine peptide sequences WR and WR was observed in salt-free aqueous solution. The phase diagrams were mapped using turbidimetry and optical microscopy, and the coacervate droplets were imaged using confocal microscopy complemented by cryo-TEM to image smaller droplets. The droplet size distribution and stability were probed using dynamic light scattering, and the droplet surface potential was obtained from zeta potential measurements.
View Article and Find Full Text PDFChirality plays a crucial role in the self-assembly of biomolecules in nature. Peptides show chirality-dependent conformation and self-assembly. Lipidation of peptides occurs in vivo and has recently been exploited in designed conjugates to drive self-assembly and enhance bioactivity.
View Article and Find Full Text PDFThis study details the preparation and investigation of molecular nanogels formed by the self-assembly of bolaamphiphilic dipeptide derivatives containing a reduction-sensitive disulfide unit. The described bolaamphiphiles, featuring amino acid terminal groups, generate cationic vesicles at pH 4, which evolve into gel-like nanoparticles at pH 7. The critical aggregation concentration has been determined, and the nanogels' size and morphology have been characterized through Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM).
View Article and Find Full Text PDFThe growing reliance on pesticides for pest management in agriculture highlights the need for new analytical methods to detect these substances in food and water. Our research introduces a SPRWG-(CH) lipopeptide (LP) as a functional analog of acetylcholinesterase (AChE) for glyphosate detection in environmental samples using phosphatidylcholine (PC) monolayers. This LP, containing hydrophilic amino acids linked to an 18-carbon aliphatic chain, alters lipid assembly properties, leading to a more flexible system.
View Article and Find Full Text PDFThe influence of alpha-cyclodextrin (αCD) on PEG crystallization is examined for a peptide-PEG conjugate, YYKLVFF-PEG3k comprising an amyloid peptide YYKLVFF linked to PEG with molar mass 3 kg mol. Remarkably, differential scanning calorimetry (DSC) and simultaneous synchrotron small-angle/wide-angle X-ray scattering (SAXS/WAXS) show that crystallization of PEG is suppressed by αCD, provided that the cyclodextrin content is sufficient. A hexagonal mesophase is formed instead.
View Article and Find Full Text PDFThe self-assembly in aqueous solution of three Fmoc-amino acids with hydrophobic (aliphatic or aromatic, alanine or phenylalanine) or hydrophilic cationic residues (arginine) is compared. The critical aggregation concentrations were obtained using intrinsic fluorescence or fluorescence probe measurements, and conformation was probed using circular dichroism spectroscopy. Self-assembled nanostructures were imaged using cryo-transmission electron microscopy and small-angle X-ray scattering (SAXS).
View Article and Find Full Text PDFThe conformation and self-assembly of two pairs of model lipidated tripeptides in aqueous solution are probed using a combination of spectroscopic methods along with cryogenic-transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering (SAXS). The palmitoylated lipopeptides comprise C-YKK or C-WKK (with two l-lysine residues) or their respective derivatives containing d-lysine (k), i.e.
View Article and Find Full Text PDFThere has been considerable interest in peptides in which the Fmoc (9-fluorenylmethoxycarbonyl) protecting group is retained at the N-terminus, since this bulky aromatic group can drive self-assembly, and Fmoc-peptides are biocompatible and have applications in cell culture biomaterials. Recently, analogues of new amino acids with 2,7-disulfo-9-fluorenylmethoxycarbonyl (Smoc) protecting groups have been developed for water-based peptide synthesis. Here, we report on the self-assembly and biocompatibility of Smoc-Ala, Smoc-Phe and Smoc-Arg as examples of Smoc conjugates to aliphatic, aromatic, and charged amino acids, respectively.
View Article and Find Full Text PDFSelf-assembled supramolecular hydrogels offer great potential as biomaterials and drug delivery systems. Specifically, peptide-based multicomponent hydrogels are promising materials due to their advantage that their mechanical and physical properties can be tuned to enhance their functionalities and broaden their applications. Herein, we report two-component assembly and formation of hydrogels containing inexpensive complementary anionic, BUVV-OH (A), and cationic, KFFC12 (B), peptide amphiphiles.
View Article and Find Full Text PDFCyclodextrins are saccharide ring molecules which act as host cavities that can encapsulate small guest molecules or thread polymer chains. We investigate the influence of alpha-cyclodextrin (αCD) on the aqueous solution self-assembly of a peptide-polymer conjugate YYKLVFF-PEG3K previously studied by our group [Castelletto et al., Polym.
View Article and Find Full Text PDFAdv Colloid Interface Sci
August 2023
The use of small-angle scattering (SAS) in the study of the self-assembly of peptides and peptide conjugates (lipopeptides, polymer-peptide conjugates and others) is reviewed, highlighting selected research that illustrates different methods and analysis techniques. Both small-angle x-ray scattering (SAXS) and small-angle neutron scattering (SANS) are considered along with examples that exploit their unique capabilities. For SAXS, this includes the ability to perform rapid measurements enabling high throughput or fast kinetic studies and measurements under dilute conditions.
View Article and Find Full Text PDFSelf-assembled peptide-based hydrogels are archetypical nanostructured materials with a plethora of foreseeable applications in nanomedicine and as biomaterials. N-protected di- and tri-peptides are effective minimalist (molecular) hydrogelators. Independent variation of the capping group, peptide sequence and side chain modifications allows a wide chemical space to be explored and hydrogel properties to be tuned.
View Article and Find Full Text PDFBradykinin (BK) is a peptide hormone that plays a crucial role in blood pressure control, regulates inflammation in the human body, and has recently been implicated in the pathophysiology of COVID-19. In this study, we report a strategy for fabricating highly ordered 1D nanostructures of BK using DNA fragments as a template for self-assembly. We have combined synchrotron small-angle X-ray scattering and high-resolution microscopy to provide insights into the nanoscale structure of BK-DNA complexes, unveiling the formation of ordered nanofibrils.
View Article and Find Full Text PDFA histidine-based amphiphilic peptide () has been found to form an injectable transparent hydrogel in phosphate buffer solution over a pH range from 7.0 to 8.5 with an inherent antibacterial property.
View Article and Find Full Text PDFThe Mpemba effect and its inverse can be understood as a result of nonequilibrium thermodynamics. In polymers, changes of state are generally non-equilibrium processes. However, the Mpemba effect has been rarely reported in the crystallization of polymers.
View Article and Find Full Text PDF