Publications by authors named "Ian Gynther"

Monitoring is critical to assess management effectiveness, but broadscale systematic assessments of monitoring to evaluate and improve recovery efforts are lacking. We compiled 1808 time series from 71 threatened and near-threatened terrestrial and volant mammal species and subspecies in Australia (48% of all threatened mammal taxa) to compare relative trends of populations subject to different management strategies. We adapted the Living Planet Index to develop the Threatened Species Index for Australian Mammals and track aggregate trends for all sampled threatened mammal populations and for small (<35 g), medium (35-5500 g), and large mammals (>5500 g) from 2000 to 2017.

View Article and Find Full Text PDF

Rodents are the most widespread and diverse order of vertebrate mycophagists and are key to the dispersal of mycorrhizal fungi. Rodents consume and subsequently disperse fungi through their feces on every continent except Antarctica. This study examines the fungal taxa consumed by the Hastings River mouse (), an endangered Australian endemic rodent from the family Muridae.

View Article and Find Full Text PDF

The black-tailed dusky antechinus () is a recently discovered, endangered, carnivorous marsupial mammal endemic to the Tweed Shield Volcano caldera, straddling the border between Queensland and New South Wales in eastern Australia. The species' preference for cool, high-altitude habitats makes it particularly vulnerable to a shifting climate as these habitats recede. Aside from basic breeding and dietary patterns, the species' ecology is largely unknown.

View Article and Find Full Text PDF

The water mouse is a small and vulnerable rodent present in coastal areas of south-west Papua New Guinea, and eastern Queensland and the Northern Territory of Australia. Current knowledge regarding the distribution of the water mouse is incomplete and the loss of one local population has been documented in southeast Queensland, a region where pressures from urban and industrial development are increasing. Water mouse populations have not been studied intensively enough to enable the primary factors responsible for the local decline to be identified.

View Article and Find Full Text PDF

Background: In owls, the visual pathways from the retina are totally crossed. Attempts to find ganglion cells with uncrossed axons have failed consistently, when retrograde labeling with HRP is used for their identification. In the present investigation we have used retrograde fluorescent tracers of complementary colour in each optic tectum to demonstrate a tiny population of ipsilaterally-projecting retinal ganglion cells in the owl.

View Article and Find Full Text PDF