Publications by authors named "Ian Groves"

Three-dimensional chromatin control of eukaryotic transcription is pivotal for regulating gene expression. This additional layer of epigenetic regulation is also utilized by DNA viruses, including herpesviruses. Dynamic, spatial genomic organization often involves looping of chromatin anchored by host-encoded CCCTC-binding factor (CTCF) and other factors, which control crosstalk between promoters and enhancers.

View Article and Find Full Text PDF

Introduction: Carbon monoxide (CO) is a toxic gas that can be lethal in large doses and may also cause physiological damage in lower doses. Epidemiological studies suggest that CO in lower doses over time may impact on embryo development, in particular cardiac development, however other studies have not observed this association.

Methods: Here, we exposed chick embryos in ovo to CO at three different concentrations (3, 9, 18 ppm) plus air control (4 protocols in total) for the first 9 days of development, at which point we assessed egg and embryo weight, ankle length, developmental stage, heart weight, ventricular wall thickness, ventricular-septal thickness and atrial wall thickness.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) is a prevalent pathogen that establishes life-long latent infection in hematopoietic cells. While this infection is usually asymptomatic, immune dysregulation leads to viral reactivation, which can cause significant morbidity and mortality. However, the mechanisms underpinning reactivation remain incompletely understood.

View Article and Find Full Text PDF

The exquisite specificity of antibodies can be harnessed to effect targeted degradation of membrane proteins. Here, we demonstrate targeted protein removal utilising a protein degradation domain derived from the endogenous human protein Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9). Recombinant antibodies genetically fused to this domain drive the degradation of membrane proteins that undergo constitutive internalisation and recycling, including the transferrin receptor and the human cytomegalovirus latency-associated protein US28.

View Article and Find Full Text PDF

Recent work shows that the developmental potential of progenitor cells in the HH10 chick brain changes rapidly, accompanied by subtle changes in morphology. This demands increased temporal resolution for studies of the brain at this stage, necessitating precise and unbiased staging. Here, we investigated whether we could train a deep convolutional neural network to sub-stage HH10 chick brains using a small dataset of 151 expertly labelled images.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) infection can lead to either lytic or latent infection, which is dependent on the regulation of the viral major immediate early promoter (MIEP). Suppression of the MIEP is a pre-requisite for latency and is driven by repressive epigenetic modifications at the MIEP during latent infection. However, other viral genes are expressed during latency and this is correlated with activatory epigenetic modifications at latent gene promoters.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) is a betaherpesvirus that establishes lifelong infection in its host and can cause severe comorbidities in individuals with suppressed or compromised immune systems. The lifecycle of HCMV consists of lytic and latent phases, largely dependent upon the cell type infected and whether transcription from the major immediate early locus can ensue. Control of this locus, which acts as a critical "switch" region from where the lytic gene expression cascade originates, as well as regulation of the additional ~235 kilobases of virus genome, occurs through chromatinization with cellular histone proteins after infection.

View Article and Find Full Text PDF

The tuberal hypothalamus controls life-supporting homeostatic processes, but despite its fundamental role, the cells and signalling pathways that specify this unique region of the central nervous system in embryogenesis are poorly characterised. Here, we combine experimental and bioinformatic approaches in the embryonic chick to show that the tuberal hypothalamus is progressively generated from hypothalamic floor plate-like cells. Fate-mapping studies show that a stream of tuberal progenitors develops in the anterior-ventral neural tube as a wave of neuroepithelial-derived BMP signalling sweeps from anterior to posterior through the hypothalamic floor plate.

View Article and Find Full Text PDF

Cytomegalovirus (CMV) reactivation from latency following immune dysregulation remains a serious risk for patients, often causing substantial morbidity and mortality. Here, we demonstrate the CMV-encoded G protein-coupled receptor, US28, in coordination with cellular Ephrin receptor A2, attenuates mitogen-activated protein kinase signaling, thereby limiting viral replication in latently infected primary monocytes. Furthermore, treatment of latently infected primary monocytes with dasatinib, a Food and Drug Association-approved kinase inhibitor used to treat a subset of leukemias, results in CMV reactivation.

View Article and Find Full Text PDF

The hypothalamus regulates many innate behaviors, but its development remains poorly understood. Here, we used single-cell RNA sequencing (RNA-seq) and hybridization chain reaction (HCR) to profile multiple stages of early hypothalamic development in the chick. Hypothalamic neuroepithelial cells are initially induced from prethalamic-like cells.

View Article and Find Full Text PDF

Development of cervical cancer is directly associated with integration of human papillomavirus (HPV) genomes into host chromosomes and subsequent modulation of HPV oncogene expression, which correlates with multi-layered epigenetic changes at the integrated HPV genomes. However, the process of integration itself and dysregulation of host gene expression at sites of integration in our model of HPV16 integrant clone natural selection has remained enigmatic. We now show, using a state-of-the-art 'HPV integrated site capture' (HISC) technique, that integration likely occurs through microhomology-mediated repair (MHMR) mechanisms via either a direct process, resulting in host sequence deletion (in our case, partially homozygously) or via a 'looping' mechanism by which flanking host regions become amplified.

View Article and Find Full Text PDF

Latent human cytomegalovirus (HCMV) infection is characterized by limited gene expression, making latent HCMV infections refractory to current treatments targeting viral replication. However, reactivation of latent HCMV in immunosuppressed solid organ and stem cell transplant patients often results in morbidity. Here, we report the killing of latently infected cells via a virus-specific nanobody (VUN100bv) that partially inhibits signaling of the viral receptor US28.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) presents a major health burden in the immunocompromised and in stem cell transplant medicine. A lack of understanding about the mechanisms of HCMV latency in undifferentiated CD34 stem cells, and how latency is broken for the virus to enter the lytic phase of its infective cycle, has hampered the development of essential therapeutics. Using a human induced pluripotent stem cell (iPSC) model of HCMV latency and patient-derived myeloid cell progenitors, we demonstrate that bone morphogenetic protein receptor type 2 (BMPR2) is necessary for HCMV latency.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) infection is not cleared by the initial immune response but persists for the lifetime of the host, in part due to its ability to establish a latent infection in cells of the myeloid lineage. HCMV has been shown to manipulate the secretion of cellular proteins during both lytic and latent infection; with changes caused by latent infection mainly investigated in CD34+ progenitor cells. Whilst CD34+ cells are generally bone marrow resident, their derivative CD14+ monocytes migrate to the periphery where they briefly circulate until extravasation into tissue sites.

View Article and Find Full Text PDF

Reactivation of human cytomegalovirus (HCMV) from latency is a major health consideration for recipients of stem-cell and solid organ transplantations. With over 200,000 transplants taking place globally per annum, virus reactivation can occur in more than 50% of cases leading to loss of grafts as well as serious morbidity and even mortality. Here, we present the most extensive screening to date of epigenetic inhibitors on HCMV latently infected cells and find that histone deacetylase inhibitors (HDACis) and bromodomain inhibitors are broadly effective at inducing virus immediate early gene expression.

View Article and Find Full Text PDF

The extensive tropism of human cytomegalovirus (HCMV) results in the productive infection of multiple cell types within the human host. However, infection of other cell types, such as undifferentiated cells of the myeloid lineage, give rise to nonpermissive infections. This aspect has been used experimentally to model latent infection, which is known to be established in the pluripotent CD34+ hematopoietic progenitor cell population resident in the bone marrow in vivo.

View Article and Find Full Text PDF

Sonic Hedgehog (Shh) Is a critical protein in vertebrate development, orchestrating patterning and growth in many developing systems. First described as a classic morphogen that patterns tissues through a spatial concentration gradient, subsequent studies have revealed a more complex mechanism, in which Shh can also regulate proliferation and differentiation. While the mechanism of action of Shh as a morphogen is well understood, it remains less clear how Shh might integrate patterning, proliferation and differentiation in a given tissue, to ultimately direct its morphogenesis.

View Article and Find Full Text PDF

Although the ubiquitous human herpesviruses (HHVs) are rarely associated with serious disease of the healthy host, primary infection and reactivation in immunocompromised individuals can lead to significant morbidity and, in some cases, mortality. Effective drugs are available for clinical treatment, however resistance is on the rise such that new anti-viral targets, as well as novel clinical treatment strategies, are required. A promising area of development and pre-clinical research is that of inhibitors of epigenetic modifying proteins that control both cellular functions and the viral life cycle.

View Article and Find Full Text PDF

Human cytomegalovirus latency and reactivation is a major source of morbidity in immune-suppressed patient populations. Lifelong latent infections are established in CD34+progenitor cells in the bone marrow, which are hallmarked by a lack of major lytic gene expression, genome replication and virus production. A number of studies have shown that inhibition of the major immediate early promoter (MIEP) - the promoter that regulates immediate early (IE) gene expression - is important for the establishment of latency and that, by extension, reactivation requires reversal of this repression of the MIEP.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) is the most frequent viral cause of congenital defects and can trigger devastating disease in immune-suppressed patients. Cytotoxic lymphocytes (CD8+ T cells and NK cells) control HCMV infection by releasing interferon-γ and five granzymes (GrA, GrB, GrH, GrK, GrM), which are believed to kill infected host cells through cleavage of intracellular death substrates. However, it has recently been demonstrated that the in vivo killing capacity of cytotoxic T cells is limited and multiple T cell hits are required to kill a single virus-infected cell.

View Article and Find Full Text PDF

The complex life cycle of oncogenic human papillomavirus (HPV) initiates in undifferentiated basal epithelial keratinocytes where expression of the E6 and E7 oncogenes is restricted. Upon epithelial differentiation, E6/E7 transcription is increased through unknown mechanisms to drive cellular proliferation required to support virus replication. We report that the chromatin-organising CCCTC-binding factor (CTCF) promotes the formation of a chromatin loop in the HPV genome that epigenetically represses viral enhancer activity controlling E6/E7 expression.

View Article and Find Full Text PDF

The Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) is the first viral latency-associated protein produced after EBV infection of resting B cells. Its role in B cell transformation is poorly defined, but it has been reported to enhance gene activation by the EBV protein EBNA2 in vitro. We generated EBNA-LP knockout (LPKO) EBVs containing a STOP codon within each repeat unit of internal repeat 1 (IR1).

View Article and Find Full Text PDF

Human papillomavirus (HPV) infection is associated with ∼5% of all human cancers, including a range of squamous cell carcinomas. Persistent infection by high-risk HPVs (HRHPVs) is associated with the integration of virus genomes (which are usually stably maintained as extrachromosomal episomes) into host chromosomes. Although HRHPV integration rates differ across human sites of infection, this process appears to be an important event in HPV-associated neoplastic progression, leading to deregulation of virus oncogene expression, host gene expression modulation, and further genomic instability.

View Article and Find Full Text PDF

Development of cervical squamous cell carcinoma requires increased expression of the major high-risk human-papillomavirus (HPV) oncogenes E6 and E7 in basal cervical epithelial cells. We used a systems biology approach to identify host transcriptional networks in such cells and study the concentration-dependent changes produced by HPV16-E6 and -E7 oncoproteins. We investigated sample sets derived from the W12 model of cervical neoplastic progression, for which high quality phenotype/genotype data were available.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session6kg7cr7jivgi8m6l8l1t350q7e7nfmad): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once