Human corticospinal excitability (CSE) modulates during movement, when muscles are active, but also at rest, when muscles are not active. These changes in resting motor system excitability can be transient or longer lasting. Evidence from transcranial magnetic stimulation (TMS) studies suggests even relatively short periods of motor learning on the order of minutes can have lasting effects on resting CSE.
View Article and Find Full Text PDFThe seemingly effortless ability of humans to transition from thinking about actions to initiating them relies on sculpting corticospinal output from primary motor cortex. This study tested whether canonical additive and multiplicative neural computations, well-described in sensory systems, generalize to the corticospinal pathway during human action preparation. We used non-invasive brain stimulation to measure corticospinal input-output across varying action preparation contexts during instructed-delay finger response tasks.
View Article and Find Full Text PDFReactively canceling movements is a vital feature of the motor system to ensure safety. This behavior can be studied in the laboratory using the stop-signal task. There remains ambiguity about whether a "point-of-no-return" exists, after which a response cannot be aborted.
View Article and Find Full Text PDFNeural analyses of response inhibition rely on separating trials with and without a behavioral response. Can researchers be sure the absence of a behavioral outcome equates to the presence of inhibitory control? We emphasize advancing response inhibition research by utilizing peripheral measures of response progress to define behavioral stopping contrasts.
View Article and Find Full Text PDFPrevious research applying transcranial magnetic stimulation during unimanual reaction time tasks indicates a transient change in the inhibitory influence of the dorsal premotor cortex over the contralateral primary motor cortex shortly after the presentation of an imperative stimulus. The degree of interhemispheric inhibition from the dorsal premotor cortex to the contralateral primary motor cortex shifts depending on whether the targeted effector representation in the primary motor cortex is selected for movement. Further, the timing of changes in inhibition covaries with the selection demands of the reaction time task.
View Article and Find Full Text PDFTranscranial magnetic stimulation (TMS) research has furthered understanding of human dorsal premotor cortex (PMd) function due to its unrivalled ability to measure the inhibitory and facilitatory influences of PMd over the primary motor cortex (M1) in a temporally precise manner. TMS research indicates that PMd transiently modulates inhibitory output to effector representations within M1 during motor preparation, with the direction of modulation depending on which effectors are selected for response, and the timing of modulations co-varying with task selection demands. In this review, we critically assess this literature in the context of a dynamical systems approach used to model nonhuman primate (NHP) PMd/M1 single-neuron recordings during action preparation.
View Article and Find Full Text PDFReaching is a widely studied behavior in motor physiology and neuroscience research. While reaching has been examined using a variety of behavioral manipulations, there remain significant gaps in the understanding of the neural processes involved in reach planning, execution, and control. The novel approach described here combines a two-dimensional reaching task with transcranial magnetic stimulation (TMS) and concurrent electromyography (EMG) recording from multiple muscles.
View Article and Find Full Text PDFSignatures of inhibition within the cortico-spinal pathway are frequently observed during action preparation in humans. Popular theoretical and computational models highlight a critical role for inhibition as the suppressor of motor system output, e.g.
View Article and Find Full Text PDFPurpose: Heating of gradient coils and passive shim components is a common cause of instability in the B field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites.
Method: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors.
Action preparation involves widespread modulation of motor system excitability, but the precise mechanisms are unknown. In this study, we investigated whether intracortical inhibition changes in task-irrelevant muscle representations during action preparation. We used transcranial magnetic stimulation (TMS) combined with electromyography in healthy human adults to measure motor-evoked potentials (MEPs) and cortical silent periods (CSPs) in task-irrelevant muscles during the preparatory period of simple delayed response tasks.
View Article and Find Full Text PDFIn our everyday behavior, we frequently cancel one movement while continuing others. Two competing models have been suggested for the cancellation of such specific actions: (1) the abrupt engagement of a unitary global inhibitory mechanism followed by reinitiation of the continuing actions; or (2) a balance between distinct global and selective inhibitory mechanisms. To evaluate these models, we examined behavioral and physiological markers of proactive control, motor preparation, and response inhibition using a combination of behavioral task performance measures, electromyography, electroencephalography, and motor evoked potentials elicited with transcranial magnetic stimulation.
View Article and Find Full Text PDFBackground The hardware and software differences between MR vendors and individual sites influence the quantification of MR spectroscopy data. An analysis of a large data set may help to better understand sources of the total variance in quantified metabolite levels. Purpose To compare multisite quantitative brain MR spectroscopy data acquired in healthy participants at 26 sites by using the vendor-supplied single-voxel point-resolved spectroscopy (PRESS) sequence.
View Article and Find Full Text PDFThe combination of electromyography (EMG) and transcranial magnetic stimulation (TMS) offers a powerful non-invasive approach for investigating corticospinal excitability in both humans and animals. Acquiring and analyzing the data produced with this combination of tools requires overcoming multiple technical hurdles. Due in part to these technical hurdles, the field lacks standard routines for EMG data collection and analysis.
View Article and Find Full Text PDFResponse inhibition is essential for navigating everyday life. Its derailment is considered integral to numerous neurological and psychiatric disorders, and more generally, to a wide range of behavioral and health problems. Response-inhibition efficiency furthermore correlates with treatment outcome in some of these conditions.
View Article and Find Full Text PDFAccurate and reliable quantification of brain metabolites measured in vivo using H magnetic resonance spectroscopy (MRS) is a topic of continued interest. Aside from differences in the basic approach to quantification, the quantification of metabolite data acquired at different sites and on different platforms poses an additional methodological challenge. In this study, spectrally edited γ-aminobutyric acid (GABA) MRS data were analyzed and GABA levels were quantified relative to an internal tissue water reference.
View Article and Find Full Text PDFMotor-evoked potentials (MEPs), elicited by transcranial magnetic stimulation (TMS) over the motor cortex, are reduced during the preparatory period in delayed response tasks. In this study we examined how MEP suppression varies as a function of the anatomical organization of the motor cortex. MEPs were recorded from a left index muscle while participants prepared a hand or leg movement in or prepared an eye or mouth movement in .
View Article and Find Full Text PDFCurrent theories consider motor imagery, the mental representation of action, to have considerable functional overlap with the processes involved in actual movement preparation and execution. To test the neural specificity of motor imagery, we conducted a series of 3 experiments using transcranial magnetic stimulation (TMS). We compared changes in corticospinal excitability as people prepared and implemented actual or imagined movements, using a delayed response task in which a cue indicated the forthcoming response.
View Article and Find Full Text PDFMagnetic resonance spectroscopy (MRS) is the only biomedical imaging method that can noninvasively detect endogenous signals from the neurotransmitter γ-aminobutyric acid (GABA) in the human brain. Its increasing popularity has been aided by improvements in scanner hardware and acquisition methodology, as well as by broader access to pulse sequences that can selectively detect GABA, in particular J-difference spectral editing sequences. Nevertheless, implementations of GABA-edited MRS remain diverse across research sites, making comparisons between studies challenging.
View Article and Find Full Text PDFTranscranial magnetic stimulation (TMS) studies in humans have shown that many behaviors engage processes that suppress excitability within the corticospinal tract. Inhibition of the motor output pathway has been extensively studied in the context of action stopping, where a planned movement needs to be abruptly aborted. Recent TMS work has also revealed markers of motor inhibition during the preparation of movement.
View Article and Find Full Text PDFIndividuals differ in the intrinsic excitability of their corticospinal pathways and, perhaps more generally, their entire nervous system. At present, we have little understanding of the mechanisms underlying these differences and how variation in intrinsic excitability relates to behavior. Here, we examined the relationship between individual differences in intrinsic corticospinal excitability, local cortical GABA levels, and reaction time (RT) in a group of 20 healthy human adults.
View Article and Find Full Text PDFH magnetic resonance spectroscopy (MRS) provides a powerful tool to measure gamma-aminobutyric acid (GABA), the principle inhibitory neurotransmitter in the human brain. We asked whether individual differences in MRS estimates of GABA are uniform across the cortex or vary between regions. In two sessions, resting GABA concentrations in the lateral prefrontal, sensorimotor, dorsal premotor, and occipital cortices were measured in twenty-eight healthy individuals.
View Article and Find Full Text PDFUnlabelled: Motor system excitability is transiently inhibited during the preparation of responses. Previous studies have attributed this inhibition to the operation of two mechanisms, one hypothesized to help resolve competition between alternative response options, and the other to prevent premature response initiation. By this view, inhibition should be restricted to task-relevant muscles.
View Article and Find Full Text PDFIn this study, we examined the dynamics of inhibitory preparatory processes, using a delayed response task in which a cue signaled a left or right index finger (Experiment 1) or hand (Experiment 2) movement in advance of an imperative signal. In Experiment 1, we varied the duration of the delay period (200, 500, and 900 ms). When transcranial magnetic stimulation (TMS) was applied 100 ms before the imperative, motor evoked potentials (MEPs) elicited in the first dorsal interosseous were strongly inhibited.
View Article and Find Full Text PDFMotor system excitability is transiently suppressed during the preparation of movement. This preparatory inhibition is hypothesized to facilitate response selection and initiation. Given that demands on selection and initiation processes increase with movement complexity, we hypothesized that complexity would influence preparatory inhibition.
View Article and Find Full Text PDF