The establishment of defense reactions to protect plants against pathogens requires the recognition of invasion patterns (IPs), mainly detected by plasma membrane-bound pattern recognition receptors (PRRs). Some IPs, also termed elicitors, are used in several biocontrol products that are gradually being developed to reduce the use of chemicals in agriculture. Chitin, the major component of fungal cell walls, as well as its deacetylated derivative, chitosan, are two elicitors known to activate plant defense responses.
View Article and Find Full Text PDFBackground: The high susceptibility of European grapevine cultivars (Vitis vinifera) to downy mildew (Plasmopara viticola) leads to the intensive use of fungicides in viticulture. To reduce this input, breeding programs have introgressed resistance loci from wild Vitis species into V. vinifera, resulting in new fungus-resistant grapevine cultivars (FRC).
View Article and Find Full Text PDFGrapevine downy mildew (DM) is a destructive oomycete disease of viticulture worldwide. MrRPV1 is a typical TIR-NBS-LRR type DM disease resistance gene cloned from the wild North American grapevine species Muscadinia rotundifolia. However, the molecular basis of resistance mediated by MrRPV1 remains poorly understood.
View Article and Find Full Text PDFThe oomycete pathogen Hyaloperonospora arabidopsidis delivers diverse effector proteins into host plant cells to suppress the plant's innate immunity. In this study, we investigate the mechanism of action of a conserved RxLR effector, HaRxLL470, in suppressing plant immunity. Genomic, molecular and biochemical analyses were performed to investigate the function of HaRxLL470 and the mechanism of the interaction between HaRxLL470 and the target host protein during H.
View Article and Find Full Text PDFSARM1 (sterile alpha and TIR motif containing 1) is responsible for depletion of nicotinamide adenine dinucleotide in its oxidized form (NAD) during Wallerian degeneration associated with neuropathies. Plant nucleotide-binding leucine-rich repeat (NLR) immune receptors recognize pathogen effector proteins and trigger localized cell death to restrict pathogen infection. Both processes depend on closely related Toll/interleukin-1 receptor (TIR) domains in these proteins, which, as we show, feature self-association-dependent NAD cleavage activity associated with cell death signaling.
View Article and Find Full Text PDFBackground: European grapevine cultivars (Vitis vinifera spp.) are highly susceptible to the downy mildew pathogen Plasmopara viticola. Breeding of resistant V.
View Article and Find Full Text PDFChitin, a major component of fungal cell walls, is a well-known pathogen-associated molecular pattern (PAMP) that triggers defense responses in several mammal and plant species. Here, we show that two chitooligosaccharides, chitin and chitosan, act as PAMPs in grapevine (Vitis vinifera) as they elicit immune signalling events, defense gene expression and resistance against fungal diseases. To identify their cognate receptors, the grapevine family of LysM receptor kinases (LysM-RKs) was annotated and their gene expression profiles were characterized.
View Article and Find Full Text PDFDowny mildew is one of the most destructive diseases of grapevine, causing tremendous economic loss in the grape and wine industry. The disease agent is an obligate biotrophic oomycete, from which over 100 candidate RXLR effectors have been identified. In this study, 83 candidate RXLR effector genes () were cloned from the isolate "JL-7-2" genome.
View Article and Find Full Text PDFStilbene synthase (STS) is the key enzyme leading to the biosynthesis of resveratrol. Recently we reported two R2R3-MYB transcription factor (TF) genes that regulate the stilbene biosynthetic pathway in grapevine: VviMYB14 and VviMYB15. These genes are strongly co-expressed with STS genes under a range of stress and developmental conditions, in agreement with the specific activation of STS promoters by these TFs.
View Article and Find Full Text PDFPlasmopara viticola causes downy mildew disease of grapevine which is one of the most devastating diseases of viticulture worldwide. Here we report a 101.3 Mb whole genome sequence of P.
View Article and Find Full Text PDFThe N-terminal Toll/interleukin-1 receptor/resistance protein (TIR) domain has been shown to be both necessary and sufficient for defense signaling in the model plants flax and . In examples from these organisms, TIR domain self-association is required for signaling function, albeit through distinct interfaces. Here, we investigate these properties in the TIR domain containing resistance protein RPV1 from the wild grapevine .
View Article and Find Full Text PDFBackground: Grapevine powdery mildew Erysiphe necator is a major fungal disease in all grape growing countries worldwide. Breeding for resistance to this disease is crucial to avoid extensive fungicide applications that are costly, labor intensive and may have detrimental effects on the environment. In the past decade, Chinese Vitis species have attracted attention from grape breeders because of their strong resistance to powdery mildew and their lack of negative fruit quality attributes that are often present in resistant North American species.
View Article and Find Full Text PDFPseudomonas syringae pv. syringae causes extensive yield losses in wine-grape production in some Australian cool-climate vineyards. Putative P.
View Article and Find Full Text PDFThe most economically important disease of cultivated grapevines worldwide is powdery mildew (PM) caused by the ascomycete fungus Erysiphe necator. The majority of grapevine cultivars used for wine, table grape, and dried fruit production are derived from the Eurasian grape species Vitis vinifera because of its superior aroma and flavor characteristics. However, this species has little genetic resistance against E.
View Article and Find Full Text PDFThe Toll/interleukin-1 receptor nucleotide-binding site leucine-rich repeat gene, "resistance to Uncinula necator 1" (RUN1), from Vitis rotundifolia was recently identified and confirmed to confer resistance to the grapevine powdery mildew fungus Erysiphe necator (syn. U. necator) in transgenic V.
View Article and Find Full Text PDFAn accurate assessment of the disease resistance status of plants to fungal pathogens is an essential requirement for the development of resistant crop plants. Many disease resistance phenotypes are partial rather than obvious immunity and are frequently scored using subjective qualitative estimates of pathogen development or plant disease symptoms. Here we report a method for the accurate comparison of total fungal biomass in plant tissues.
View Article and Find Full Text PDFThe most economically important diseases of grapevine cultivation worldwide are caused by the fungal pathogen powdery mildew (Erysiphe necator syn. Uncinula necator) and the oomycete pathogen downy mildew (Plasmopara viticola). Currently, grapegrowers rely heavily on the use of agrochemicals to minimize the potentially devastating impact of these pathogens on grape yield and quality.
View Article and Find Full Text PDFMol Plant Microbe Interact
June 2013
Plant phenotypes resistant and susceptible to fungal pathogens are usually scored using qualitative, subjective methods that are based upon disease symptoms or by an estimation of the amount of visible fungal growth. Given that plant resistance genes often confer partial resistance to fungal pathogens, a simple, sensitive, nonsubjective quantitative method for measuring pathogen growth would be highly advantageous. This report describes an in planta quantitative assay for fungal biomass based upon detection of chitin using wheat germ agglutinin conjugated to a fluorophore.
View Article and Find Full Text PDFBackground: Plant stilbenes are a small group of phenylpropanoids, which have been detected in at least 72 unrelated plant species and accumulate in response to biotic and abiotic stresses such as infection, wounding, UV-C exposure and treatment with chemicals. Stilbenes are formed via the phenylalanine/polymalonate-route, the last step of which is catalyzed by the enzyme stilbene synthase (STS), a type III polyketide synthase (PKS). Stilbene synthases are closely related to chalcone synthases (CHS), the key enzymes of the flavonoid pathway, as illustrated by the fact that both enzymes share the same substrates.
View Article and Find Full Text PDFDNA β satellites are circular single-stranded molecules associated with some monopartite begomoviruses in the family Geminiviridae. They co-infect with their helper viruses to induce severe disease in economically important crops. The βC1 protein encoded by DNA β is a pathogenicity determinant and has been reported to suppress post-transcriptional gene silencing (PTGS).
View Article and Find Full Text PDFInitiation of asexual sporulation in powdery mildews is preceded by a period of superficial vegetative growth of mildew colonies. We found evidence of a quorum-sensing signal in Erysiphe necator that was promulgated at the colony center and stimulated conidiation throughout the colony. Removal of the colony center after putative signal promulgation had no impact upon timing of sporulation by 48-h-old hyphae at the colony margin.
View Article and Find Full Text PDFUnlabelled: Few plant pathogens have had a more profound effect on the evolution of disease management than Erysiphe necator, which causes grapevine powdery mildew. When the pathogen first spread from North America to England in 1845, and onwards to France in 1847, 'germ theory' was neither understood among the general populace nor even generally accepted within the scientific community. Louis Pasteur had only recently reported the microbial nature of fermentation, and it would be another 30 years before Robert Koch would publish his proofs of the microbial nature of certain animal diseases.
View Article and Find Full Text PDFThe cultivated grapevine, Vitis vinifera, is a member of the Vitaceae family, which comprises over 700 species in 14 genera. Vitis vinifera is highly susceptible to the powdery mildew pathogen Erysiphe necator. However, other species within the Vitaceae family have been reported to show resistance to this fungal pathogen, but little is known about the mechanistic basis of this resistance.
View Article and Find Full Text PDF