Antarctic environments are dominated by microorganisms, which are vulnerable to viral infection. Although several studies have investigated the phylogenetic repertoire of bacteria and viruses in these poly-extreme environments with freezing temperatures, high ultra violet irradiation levels, low moisture availability and hyper-oligotrophy, the evolutionary mechanisms governing microbial immunity remain poorly understood. Using genome-resolved metagenomics, we test the hypothesis that Antarctic poly-extreme high-latitude microbiomes harbour diverse adaptive immune systems.
View Article and Find Full Text PDFFungi are among the most diverse and ecologically important kingdoms in life. However, the distributional ranges of fungi remain largely unknown as do the ecological mechanisms that shape their distributions. To provide an integrated view of the spatial and seasonal dynamics of fungi, we implemented a globally distributed standardized aerial sampling of fungal spores.
View Article and Find Full Text PDFNovel methods for sampling and characterizing biodiversity hold great promise for re-evaluating patterns of life across the planet. The sampling of airborne spores with a cyclone sampler, and the sequencing of their DNA, have been suggested as an efficient and well-calibrated tool for surveying fungal diversity across various environments. Here we present data originating from the Global Spore Sampling Project, comprising 2,768 samples collected during two years at 47 outdoor locations across the world.
View Article and Find Full Text PDFGlobal biodiversity gradients are generally expected to reflect greater species replacement closer to the equator. However, empirical validation of global biodiversity gradients largely relies on vertebrates, plants, and other less diverse taxa. Here we assess the temporal and spatial dynamics of global arthropod biodiversity dynamics using a beta-diversity framework.
View Article and Find Full Text PDFBackground: Antarctica and its unique biodiversity are increasingly at risk from the effects of global climate change and other human influences. A significant recent element underpinning strategies for Antarctic conservation has been the development of a system of Antarctic Conservation Biogeographic Regions (ACBRs). The datasets supporting this classification are, however, dominated by eukaryotic taxa, with contributions from the bacterial domain restricted to Actinomycetota and Cyanobacteriota.
View Article and Find Full Text PDFIntroduction: The Antarctic McMurdo Dry Valleys are geologically diverse, encompassing a wide variety of soil habitats. These environments are largely dominated by microorganisms, which drive the ecosystem services of the region. While altitude is a well-established driver of eukaryotic biodiversity in these Antarctic ice-free areas (and many non-Antarctic environments), little is known of the relationship between altitude and microbial community structure and functionality in continental Antarctica.
View Article and Find Full Text PDFFree-living terrestrial mites (Acari) have persisted through numerous glacial cycles in Antarctica. Very little is known, however, of their genetic diversity and distribution, particularly within the Ross Sea region. To redress this gap, we sampled mites throughout the Ross Sea region, East Antarctica, including Victoria Land and the Queen Maud Mountains (QMM), covering a latitudinal range of 72-85 °S, as well as Lauft Island near Mt.
View Article and Find Full Text PDFMicrobial communities can be structured by both deterministic and stochastic processes, but the relative importance of these processes remains unknown. The ambiguity partly arises from an inability to disentangle soil microbial processes from confounding factors, such as aboveground plant communities or anthropogenic disturbance. In this study, we characterized the relative contributions of determinism and stochasticity to assembly processes of soil bacterial communities across a large environmental gradient of undisturbed Antarctic soils.
View Article and Find Full Text PDFCurr Res Insect Sci
September 2022
Assessing the resilience of polar biota to climate change is essential for predicting the effects of changing environmental conditions for ecosystems. Collembola are abundant in terrestrial polar ecosystems and are integral to food-webs and soil nutrient cycling. Using available literature, we consider resistance (genetic diversity; behavioural avoidance and physiological tolerances; biotic interactions) and recovery potential for polar Collembola.
View Article and Find Full Text PDFLakes provide habitat for a diverse array of species and offer a wide range of ecosystem services for humanity. However, they are highly vulnerable as they are not only impacted by adverse actions directly affecting them, but also those on the surrounding environment. Improving knowledge on the processes responsible for community assembly in different biotic components will aid in the protection and restoration of lakes.
View Article and Find Full Text PDFAssessing genetic differentiation among natural populations can aid understanding of dispersal patterns and connectivity among habitats. Several molecular markers have become increasingly popular in determining population genetic structure for this purpose. Here, we compared the resolution of mitochondrial cytochrome oxidase subunit I (COI) and nuclear single nucleotide polymorphism (SNP) markers for detecting population structure among stream insects at small spatial scales.
View Article and Find Full Text PDFThe inland soils found on the Antarctic continent represent one of the more challenging environments for microbial life on Earth. Nevertheless, Antarctic soils harbor unique bacterial and archaeal (prokaryotic) communities able to cope with extremely cold and dry conditions. These communities are not homogeneous, and the taxonomic composition and functional capabilities (genomic attributes) of these communities across environmental gradients remain largely undetermined.
View Article and Find Full Text PDFWe used DNA barcoding to assess the diversity and distribution of New Zealand's groundwater amphipods and isopods (Crustacea) and to determine whether biodiversity and endemism within tectonically active New Zealand are similar to those of more tectonically stable continents. Sixty-five wells were sampled in seven aquifers across four regions within the North and South islands of New Zealand, and resident invertebrates were morphologically identified and then assessed using sequencing of the mitochondrial DNA cytochrome oxidase subunit one (COI) gene. Invertebrates were found in 54 wells.
View Article and Find Full Text PDFNumerous diverse microorganisms reside in the cold desert soils of continental Antarctica, though we lack a holistic understanding of the metabolic processes that sustain them. Here, we profile the composition, capabilities, and activities of the microbial communities in 16 physicochemically diverse mountainous and glacial soils. We assembled 451 metagenome-assembled genomes from 18 microbial phyla and inferred through Bayesian divergence analysis that the dominant lineages present are likely native to Antarctica.
View Article and Find Full Text PDFDuring austral summer field seasons between 1999 and 2018, we sampled at 91 locations throughout southern Victoria Land and along the Transantarctic Mountains for six species of endemic microarthropods (Collembola), covering a latitudinal range from 76.0°S to 87.3°S.
View Article and Find Full Text PDFAccurate and cost-effective methods for tracking changes in arthropod communities are needed to develop integrative environmental monitoring programs in the Arctic. To date, even baseline data on their species composition at established ecological monitoring sites are severely lacking. We present the results of a pilot assessment of non-marine arthropod diversity in a middle arctic tundra area near Ikaluktutiak (Cambridge Bay), Victoria Island, Nunavut, undertaken in 2018 using DNA barcodes.
View Article and Find Full Text PDFAim: To assess spatial patterns of genetic and species-level diversity for Namib Desert Collembola using mitochondrial DNA cytochrome oxidase subunit I (COI) gene sequences.
Location: Namib Desert gravel plains.
Taxon: Collembola (springtails).
Abiotic factors are major determinants of soil animal distributions and their dominant role is pronounced in extreme ecosystems, with biotic interactions seemingly playing a minor role. We modelled co-occurrence and distribution of the three nematode species that dominate the soil food web of the McMurdo Dry Valleys (Antarctica). Abiotic factors, other biotic groups, and autocorrelation all contributed to structuring nematode species distributions.
View Article and Find Full Text PDFAbiotic and biotic factors control ecosystem biodiversity, but their relative contributions remain unclear. The ultraoligotrophic ecosystem of the Antarctic Dry Valleys, a simple yet highly heterogeneous ecosystem, is a natural laboratory well-suited for resolving the abiotic and biotic controls of community structure. We undertook a multidisciplinary investigation to capture ecologically relevant biotic and abiotic attributes of more than 500 sites in the Dry Valleys, encompassing observed landscape heterogeneities across more than 200 km.
View Article and Find Full Text PDFThe population genetic structure of toheroa (Paphies ventricosa), an Aotearoa (New Zealand) endemic surf clam, was assessed to determine levels of inter-population connectivity and test hypotheses regarding life history, habitat distribution and connectivity in coastal vs. estuarine taxa. Ninety-eight toheroa from populations across the length of New Zealand were sequenced for the mitochondrial cytochrome c oxidase I gene with analyses suggesting a population genetic structure unique among New Zealand marine invertebrates.
View Article and Find Full Text PDFDNA-based techniques are increasingly used for measuring the biodiversity (species presence, identity, abundance and community composition) of terrestrial and aquatic ecosystems. While there are numerous reviews of molecular methods and bioinformatic steps, there has been little consideration of the methods used to collect samples upon which these later steps are based. This represents a critical knowledge gap, as methodologically sound field sampling is the foundation for subsequent analyses.
View Article and Find Full Text PDF