Publications by authors named "Ian D Chin-Sang"

Insulin-like peptides are a group of hormones crucial for regulating metabolism, growth, and development in animals. Invertebrates, such as C. elegans, have been instrumental in understanding the molecular mechanisms of insulin-like peptides.

View Article and Find Full Text PDF

MicroRNAs are critical regulators of post-transcriptional gene expression in a wide range of taxa, including invertebrates, mammals, and plants. Since their discovery in the nematode, miRNA research has exploded, and they are being identified in almost every facet of development. Invertebrate model organisms, particularly and , are ideal systems for studying miRNA function, and the roles of many miRNAs are known in these animals.

View Article and Find Full Text PDF

Cells undergo strict regulation to develop their shape in a process called morphogenesis. Caenorhabditis elegans with mutations in the variable abnormal (vab) class of genes have been shown to display epidermal and neuronal morphological defects. While several vab genes have been well-characterized, the function of the vab-6 gene remains unknown.

View Article and Find Full Text PDF

Insulin and insulin-like growth factor signaling (IIS) is an anabolic pathway conserved among humans and . In humans, the tumour suppressor protein Phosphatase and Tensin Homolog (PTEN) inhibits IIS, preventing excessive growth. PTEN variants are associated with disease, but how they affect PTEN function is not well understood.

View Article and Find Full Text PDF

To ensure survival, organisms must be capable of avoiding unfavorable habitats while ensuring a consistent food source. Caenorhabditis elegans alter their locomotory patterns upon detection of diverse environmental stimuli and can modulate their suite of behavioral responses in response to starvation conditions. Nematodes typically exhibit a decreased aversive response when removed from a food source for over 30 min.

View Article and Find Full Text PDF

C. elegans inhabit environments that require detection of diverse stimuli to modulate locomotion in order to avoid unfavourable conditions. In a mammalian context, a failure to appropriately integrate environmental signals can lead to Parkinson's, Alzheimer's, and epilepsy.

View Article and Find Full Text PDF

C. elegans encodes a PTEN homolog called DAF-18 and human PTEN can functionally replace DAF-18. Thus C.

View Article and Find Full Text PDF

Forward or reverse movement in Caenorhabditis elegans is the result of sequential contraction of muscle cells arranged along the body. In larvae, muscle cells are innervated by distinct classes of motorneurons. B motorneurons regulate forward movement and A motorneurons regulate backward movement.

View Article and Find Full Text PDF

PTEN (phosphatase and tensin homolog deleted on chromosome 10) has important roles in tumor suppression, metabolism, and development, yet its regulators, effectors, and functions are not fully understood. DAF-18 is the PTEN ortholog in Caenorhabditis elegans. DAF-18's role is highly conserved to human PTEN, and can be functionally replaced by human PTEN.

View Article and Find Full Text PDF

The tumor suppressor PTEN is a major brake for cell transformation, mainly due to its phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] phosphatase activity that directly counteracts the oncogenicity of phosphoinositide 3-kinase (PI3K). PTEN mutations are frequent in tumors and in the germ line of patients with tumor predisposition or with neurological or cognitive disorders, which makes the PTEN gene and protein a major focus of interest in current biomedical research. After almost two decades of intense investigation on the 403-residue-long PTEN protein, a previously uncharacterized form of PTEN has been discovered that contains 173 amino-terminal extra amino acids, as a result of an alternate translation initiation site.

View Article and Find Full Text PDF

Eph receptor protein-tyrosine kinases are among the oldest known animal receptors and have greatly expanded in number during vertebrate evolution. Their complex transduction mechanisms are capable of bidirectional and bimodal (multi-response) signaling. Eph receptors are expressed in almost every cell type in the human body, yet their roles in development, physiology, and disease are incompletely understood.

View Article and Find Full Text PDF

The G-protein coupled receptor (GPCR) family is comprised of seven transmembrane domain proteins and play important roles in nerve transmission, locomotion, proliferation and development, sensory perception, metabolism, and neuromodulation. GPCR research has been targeted by drug developers as a consequence of the wide variety of critical physiological functions regulated by this protein family. Neuropeptide GPCRs are the least characterized of the GPCR family as genetic systems to characterize their functions have lagged behind GPCR gene discovery.

View Article and Find Full Text PDF

The Eph receptor tyrosine kinases (RTKs) are regulators of cell migration and axon guidance. However, our understanding of the molecular mechanisms by which Eph RTKs regulate these processes is still incomplete. To understand how Eph receptors regulate axon guidance in Caenorhabditis elegans, we screened for suppressors of axon guidance defects caused by a hyperactive VAB-1/Eph RTK.

View Article and Find Full Text PDF

The NCK adaptor proteins are composed entirely of SH3 and SH2 domains and serve as protein interaction bridges for several receptors during signal transduction events. Here we report the molecular and genetic analysis of the Caenorhabditis elegans nck-1 gene. C.

View Article and Find Full Text PDF

Movement in Caenorhabditis elegans is the result of sensory cues creating stimulatory and inhibitory output from sensory neurons. Four interneurons (AIA, AIB, AIY, and AIZ) are the primary recipients of this information that is further processed en route to motor neurons and muscle contraction. C.

View Article and Find Full Text PDF

To understand how our brains function, it is necessary to know how neurons position themselves and target their axons and dendrites to their correct locations. Several evolutionarily conserved axon guidance molecules have been shown to help navigate axons to their correct target site. The Caenorhabditis elegans Eph receptor tyrosine kinase (RTK), VAB-1, has roles in early neuroblast and epidermal cell movements, but its roles in axon guidance are not well understood.

View Article and Find Full Text PDF

Mutations that affect the single C. elegans Eph receptor tyrosine kinase VAB-1 cause defects in cell movements during embryogenesis. Here, we provide genetic and molecular evidence that the VAB-1 Eph receptor functions with another neuronal receptor, SAX-3/Robo, for proper embryogenesis.

View Article and Find Full Text PDF

The C. elegans genome encodes a single Eph receptor tyrosine kinase, VAB-1, which functions in neurons to control epidermal morphogenesis. Four members of the ephrin family of ligands for Eph receptors have been identified in C.

View Article and Find Full Text PDF