Publications by authors named "Ian D Block"

We propose a laser speckle based scheme that allows the analysis of local scattering properties of light diffusely reflected from turbid media. This turbid medium can be a soft material such as a colloidal or polymeric material but can also be biological tissue. The method provides a 2D map of the scattering properties of a complex, multiple scattering medium by recording a single image.

View Article and Find Full Text PDF

Accurate characterization using static light scattering (SLS) and dynamic light scattering (DLS) methods mandates the measurement and analysis of singly scattered light. In turbid samples, the suppression of multiple scattering is therefore required to obtain meaningful results. One powerful technique for achieving this, known as 3D cross-correlation, uses two simultaneous light scattering experiments performed at the same scattering vector on the same sample volume in order to extract only the single scattering information common to both.

View Article and Find Full Text PDF

A theory is derived to describe the relationship between photonic crystal (PC) label-free imaging resolution and PC resonance spectral linewidth and location. PCs are fabricated and patterned with a resolution standard photomask in order to verify this relationship experimentally. Two distinct linear resolutions of <1 microm and 3.

View Article and Find Full Text PDF

We report on the design and demonstration of an optical imaging system capable of exciting surface-bound fluorophores within the resonant evanescent electric field of a photonic crystal surface and gathering fluorescence emission that is directed toward the imaging objective by the photonic crystal. The system also has the ability to quantify shifts in the local resonance angle induced by the adsorption of biomolecules on the photonic crystal surface for label-free biomolecular imaging. With these two capabilities combined within a single detection system, we demonstrate label-free images self-registered to enhanced fluorescence images with 328x more sensitive fluorescence detection relative to a glass surface.

View Article and Find Full Text PDF

Efficient recovery of light emitted by fluorescent molecules by employing photonic structures can result in high signal-to-noise ratio detection for biological applications including DNA microarrays, fluorescence microscopy and single molecule detection. By employing a model system comprised of colloidal quantum dots, we consider the physical basis of the extraction effect as provided by photonic crystals. Devices with different lattice symmetry are fabricated ensuring spectral and spatial coupling of quantum dot emission with leaky eigenmodes and the emission characteristics are studied using angle-resolved and angle-integrated measurements.

View Article and Find Full Text PDF