A potent anti-vascular endothelial growth factor (VEGF) biologic and a compatible delivery system were co-evaluated for protection against wet age-related macular degeneration (AMD) over a 6month period following a single intravitreal (IVT) injection. The anti-VEGF molecule is dimeric, containing two different anti-VEGF domain antibodies (dAb) attached to a human IgG1 Fc region: a dual dAb. The delivery system is based on microparticles of PolyActive™ hydrogel co-polymer.
View Article and Find Full Text PDFA potent VEGF inhibitor with novel antibody architecture and antigen binding mode has been developed. The molecule, hereafter referred to as VEGF dual dAb (domain antibody), was evaluated in vitro for binding to VEGF and for potency in VEGF-driven models and compared with other anti-VEGF biologics that have been used in ocular anti-angiogenic therapeutic regimes. VEGF dual dAb is more potent than bevacizumab and ranibizumab for VEGF binding, inhibition of VEGF receptor binding assays (RBAs), and VEGF-driven in vitro models of angiogenesis and displays comparable inhibition to aflibercept (Eylea).
View Article and Find Full Text PDFAge-related macular degeneration (AMD) is a leading cause of legal blindness in the Western world. There are effective treatments for the vascular complications of neo-vascular AMD, but no effective therapies are available for the dry/atrophic form of the disease. A previously described transgenic CFH-gene deficient mouse model, (cfh-/-), shows hallmarks of early AMD.
View Article and Find Full Text PDFVascular pathologies are known to be associated with age-related macular degeneration. Recently, age-related macular degeneration was associated with a single-nucleotide substitution of the complement factor H (CFH) gene, part of the alternative pathway of the complement system, a critical element in the innate immune response. Such polymorphisms are found in more than 50% of cases of age-related macular degeneration.
View Article and Find Full Text PDFProtein transduction domains (PTDs) are versatile peptide sequences that facilitate cell delivery of several cargo molecules including proteins. PTDs usually consist of short stretches of basic amino acids that can cross the plasma membrane and gain entry into cells. Traditionally, to assess PTD mediated protein delivery, PTD-fusion proteins have been used as purified proteins.
View Article and Find Full Text PDFNucleic Acids Res
October 2003
The available reagents for the attachment of functional moieties to plasmid DNA are limiting. Most reagents bind plasmid DNA in a non-sequence- specific manner, with undefined stoichiometry, and affect DNA charge and delivery properties or involve chemical modifications that abolish gene expression. The design and ability of oligonucleotides (ODNs) containing locked nucleic acids (LNAs) to bind supercoiled, double-stranded plasmid DNA in a sequence-specific manner are described for the first time.
View Article and Find Full Text PDF