This manuscript reviews the requirements for acceptable compositional analysis of kidney stones using various biophysical methods. High-resolution X-ray powder diffraction crystallography and Fourier transform infrared spectroscopy (FTIR) are the only acceptable methods in our labs for kidney stone analysis. The use of well-constructed spectral reference libraries is the basis for accurate and complete stone analysis.
View Article and Find Full Text PDFPolyisobutylene (PIB) is a synthetic elastomer that is a component of sealants, adhesives, and chewing gum base. We report a case of bilateral PIB urolithiasis in a patient with an ileal conduit urinary diversion due to neurogenic bladder from spinal cord injury. Infrared spectroscopy confirmed the composition of bilateral stones and adhesive from the patient's urostomy appliance to be PIB.
View Article and Find Full Text PDFWe explored surface-anchored poly(2-vinyl-4,4-dimethyl azlactone) (PVDMA) brushes as potential templates for protein immobilization. The brushes were grown using atom transfer radical polymerization from surface-anchored initiators and characterized by a combination of ellipsometry, atomic force microscopy, and X-ray photoelectron spectroscopy. RNase A was immobilized as a model enzyme through the nucleophilic attack of azlactone by the amine groups in the lysines located in the protein.
View Article and Find Full Text PDFThe ability to immobilize proteins with high binding capacities on surfaces while maintaining their activity is critical for protein microarrays and other biotechnological applications. We employed poly(acrylic acid) (PAA) brushes as templates to immobilize ribonuclease A (RNase A), which is commonly used to remove RNA from plasmid DNA preparations. The brushes are grown by surface-anchored atom-transfer radical polymerization (ATRP) initiators.
View Article and Find Full Text PDF