Publications by authors named "Ian C Lock"

Understanding how cellular pathways interact is crucial for treating complex diseases like cancer, yet our ability to map these connections systematically remains limited. Individual gene-gene interaction studies have provided insights , but they miss the emergent properties of pathways working together. To address this challenge, we developed a multi-gene approach to pathway mapping and applied it to CRISPR data from the Cancer Dependency Map .

View Article and Find Full Text PDF

Background: The tumor suppressor p53 (Trp53), also known as p53, is the most commonly mutated gene in cancer. Canonical p53 DNA damage response pathways are well characterized and classically thought to underlie the tumor suppressive effect of p53. Challenging this dogma, mouse models have revealed that p53-driven apoptosis and cell cycle arrest are dispensable for tumor suppression.

View Article and Find Full Text PDF

Background: Tp53 is the most commonly mutated gene in cancer. Canonical Tp53 DNA damage response pathways are well characterized and classically thought to underlie the tumor suppressive effect of Tp53. Challenging this dogma, mouse models have revealed that p53 driven apoptosis and cell cycle arrest are dispensable for tumor suppression.

View Article and Find Full Text PDF

Chromosomal translocations generate oncogenic fusion proteins in approximately one-third of sarcomas, but how these proteins promote tumorigenesis is not well understood. Interestingly, some translocation-driven cancers exhibit dramatic clinical responses to therapy, such as radiotherapy, although the precise mechanism has not been elucidated. Here we reveal a molecular mechanism by which the fusion oncoprotein FUS-CHOP promotes tumor maintenance that also explains the remarkable sensitivity of myxoid liposarcomas to radiation therapy.

View Article and Find Full Text PDF

Reduced protein levels of SMARCB1 (also known as BAF47, INI1, SNF5) have long been observed in synovial sarcoma. Here, we show that combined genetic loss with expression in mice synergized to produce aggressive tumors with histomorphology, transcriptomes, and genome-wide BAF-family complex distributions distinct from alone, indicating a defining role for SMARCB1 in synovial sarcoma. silencing alone in mesenchyme modeled epithelioid sarcomagenesis.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiondbr2a1ojrqnksr5b4dqc0l27f8uerg5a): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once