Reduced insulin-like growth factor 2 (IGF2) levels in Alzheimer's disease (AD) may be the mechanism relating age-related metabolic disorders to dementia. Since Igf2 is an imprinted gene, we examined age and sex differences in the relationship between amyloid-beta 1-42 (Aβ) accumulation and epigenetic regulation of the Igf2/H19 gene cluster in cerebrum, liver, and plasma of young and old male and female 5xFAD mice, in frontal cortex of male and female AD and non-AD patients, and in HEK293 cell cultures. We show IGF2 levels, Igf2 expression, histone acetylation, and H19 ICR methylation are lower in females than males.
View Article and Find Full Text PDFExposing a male rat to an obesogenic high-fat diet (HFD) influences attractiveness to potential female mates, the subsequent interaction of female mates with infant offspring, and the development of stress-related behavioral and neural responses in offspring. To examine the stomach and fecal microbiome's potential roles, fecal samples from 44 offspring and stomach samples from offspring and their fathers were collected and bacterial community composition was studied by 16 small subunit ribosomal RNA (16S rRNA) gene sequencing. Paternal diet (control, high-fat), maternal housing conditions (standard or semi-naturalistic housing), and maternal care (quality of nursing and other maternal behaviors) affected the within-subjects alpha-diversity of the offspring stomach and fecal microbiomes.
View Article and Find Full Text PDFThe membrane-associated mucin (MAM) domain containing glycosylphosphatidylinositol anchor 2 protein single knock-out mice (MDGA2 ) are models of ASD. We examined the behavioral phenotypes of male and female MDGA2 and wildtype mice on C57BL6/NJ and C57BL6/N backgrounds at 2 months of age and measured MDGA2, neuroligin 1 and neuroligin 2 levels at 7 months. Mice on the C57BL6/NJ background performed better than those on the C57BL6/N background in visual ability and in learning and memory performance in the Morris water maze and differed in measures of motor behavior and anxiety.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFDysregulation of DNA methylation is an established feature of breast cancers. DNA demethylating therapies like decitabine are proposed for the treatment of triple-negative breast cancers (TNBC) and indicators of response need to be identified. For this purpose, we characterized the effects of decitabine in a panel of 10 breast cancer cell lines and observed a range of sensitivity to decitabine that was not subtype specific.
View Article and Find Full Text PDFAcute promyelocytic leukemia (APL) is characterized by arrested differentiation of promyelocytes. Patients treated with all-trans retinoic acid (ATRA) alone experience relapse, while patients treated with ATRA and arsenic trioxide (ATO) are often relapse-free. This suggests sustained changes have been elicited by the combination therapy.
View Article and Find Full Text PDFPathologic inflammation in response to injury, infection, or oxidative stress is a proposed mechanism relating cognitive decline to dementia. The kynurenine pathway and thioredoxin-interacting protein (TXNIP) activity regulate inflammation and neurotoxicity in Alzheimer disease (AD). We examined cognitive deficits, kynurenine pathway mediators, TXNIP, and oxidative damage in the cerebrum and spleen, including inflammatory cytokine production by stimulated splenocytes, from female triple transgenic (3xTg-AD) mice in early and late stages of disease progression, and characterized tissue-specific epigenetic regulation of Txnip gene expression.
View Article and Find Full Text PDFCancer cells with a less differentiated stem-like phenotype are more resistant to therapeutic manipulations than their differentiated counterparts, and are considered as one of the main causes of cancer persistence and relapse. As such, induction of differentiation in cancer stem-like cells (CSLCs) has emerged as an alternative strategy to enhance the efficacy of anticancer therapies. CSLCs are metabolically distinct from differentiated cells, and any aberration from the intrinsic metabolic state can induce differentiation of CSLCs.
View Article and Find Full Text PDFCancer dissemination is initiated by the movement of cells into the vasculature which has been reported to be triggered by EMT (epithelial to mesenchymal transition). Cellular dissemination also requires proteases that remodel the extracellular matrix. The protease, plasmin is a prominent player in matrix remodeling and invasion.
View Article and Find Full Text PDFPancreatic cancer is arguably the deadliest cancer type. The efficacy of current therapies is often hindered by the inability to predict patient outcome. As such, the development of tools for early detection and risk prediction is key for improving outcome and quality of life.
View Article and Find Full Text PDFPaternal preconception risk factors (e.g. stress, diet, drug use) correlate with metabolic dysfunction in offspring, which is often comorbid with depressive and anxiety-like phenotypes.
View Article and Find Full Text PDFAvoiding detection and destruction by immune cells is key for tumor initiation and progression. The important role of cancer stem cells (CSCs) in tumor initiation has been well established, yet their ability to evade immune detection and targeting is only partly understood. To investigate the ability of breast CSCs to evade immune detection, we identified a highly tumorigenic population in a spontaneous murine mammary tumor based on increased aldehyde dehydrogenase activity.
View Article and Find Full Text PDFThe influence of early life experience and degree of parental-infant attachment on emotional development in children and adolescents has been comprehensively studied. Structural and mechanistic insight into the biological foundation and maintenance of mammalian defensive systems (metabolic, immune, nervous and behavioral) is slowly advancing through the emerging field of developmental molecular (epi)genetics. Initial evidence revealed that differential nurture early in life generates stable differences in offspring hypothalamic-pituitary-adrenal (HPA) regulation, in part, through chromatin remodeling and changes in DNA methylation of specific genes expressed in the brain, revealing physical, biochemical and molecular paths for the epidemiological concept of gene-environment interactions.
View Article and Find Full Text PDFDetecting past experiences with predators of a potential mate informs a female about prevailing ecological threats, in addition to stress-induced phenotypes that may be disseminated to offspring. We examined whether prior exposure of a male rat to a predator (cat) odor influences the attraction of a female toward a male, subsequent mother-infant interactions and the development of defensive (emotional) responses in the offspring. Females displayed less interest in males that had experienced predator odor.
View Article and Find Full Text PDFBreast cancer subtyping, based on the expression of hormone receptors and other genes, can determine patient prognosis and potential options for targeted therapy. Among breast cancer subtypes, tumors of basal-like and claudin-low subtypes are typically associated with worse patient outcomes, are primarily classified as triple-negative breast cancers (TNBC), and cannot be treated with existing hormone-receptor-targeted therapies. Understanding the molecular basis of these subtypes will lead to the development of more effective treatment options for TNBC.
View Article and Find Full Text PDFThe fatal neurodegenerative disorder Niemann-Pick type C (NPC) is caused in most cases by mutations in NPC1, which encodes the late endosomal NPC1 protein. Loss of NPC1 disrupts cholesterol trafficking from late endosomes to the endoplasmic reticulum and plasma membrane, causing cholesterol accumulation in late endosomes/lysosomes. Neurons are particularly vulnerable to this cholesterol trafficking defect, but the pathogenic mechanisms through which NPC1 deficiency causes neuronal dysfunction remain largely unknown.
View Article and Find Full Text PDFAdaptation to environmental changes is based on the perpetual generation of new phenotypes. Modern biology has focused on the role of epigenetic mechanisms in facilitating the adaptation of organisms to changing environments through alterations in gene expression. Inherited and/or acquired epigenetic factors are relatively stable and have regulatory roles in numerous genomic activities that translate into phenotypic outcomes.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
September 2014
Variations in maternal care in the rat influence the epigenetic state and transcriptional activity of glucocorticoid receptor (GR) gene in the hippocampus. The mechanisms underlying this maternal effect remained to be defined, including the nature of the relevant maternally regulated intracellular signalling pathways. We show here that increased maternal licking/grooming (LG), which stably enhances hippocampal GR expression, paradoxically increases hippocampal expression of the methyl-CpG binding domain protein-2 (MBD2) and MBD2 binding to the exon 17 GR promoter.
View Article and Find Full Text PDFMaltreatment in childhood affects mental health over the life course. New research shows that early life experiences alter the genome in a way that can be measured in peripheral blood samples decades later. These findings suggest a new strategy for exploring gene-environment interactions and open opportunities for translational epigenomic research.
View Article and Find Full Text PDFIncreasing evidence suggests that deficits in adult stem cell maintenance cause aberrant tissue repair and premature aging [1]. While the mechanisms regulating stem cell longevity are largely unknown, recent studies have implicated p53 and its family member p63. Both proteins regulate organismal aging [2-4] as well as survival and self-renewal of tissue stem cells [5-9].
View Article and Find Full Text PDFIncreasing evidence indicates that epigenetic changes regulate cell genesis. Here, we ask about neural precursors, focusing on CREB binding protein (CBP), a histone acetyltransferase that, when haploinsufficient, causes Rubinstein-Taybi syndrome (RTS), a genetic disorder with cognitive dysfunction. We show that neonatal cbp(+/-) mice are behaviorally impaired, displaying perturbed vocalization behavior.
View Article and Find Full Text PDFBirth Defects Res C Embryo Today
December 2009
A major question in the biology of stress and environmental adaptation concerns the neurobiological basis of how neuroendocrine systems governing physiological regulatory mechanisms essential for life (metabolism, immune response, organ function) become harmful. The current view is that a switch from protection to damage occurs when vulnerable phenotypes are exposed to adverse environmental conditions. In accordance with this theory, sequelae of early life social and environmental stressors, such as childhood abuse, neglect, poverty, and poor nutrition, have been associated with the emergence of mental and physical illness (i.
View Article and Find Full Text PDFThe early nurturing environment has persistent influences on developmental programming of inter-individual differences in metabolic and endocrine function that contribute to emotional and cognitive performance through life. These effects are mediated, in part, through neonatal programming of hypothalamic-pituitary-adrenal (HPA) axis function. Animal models support this hypothesis.
View Article and Find Full Text PDFRecent observations suggest that DNA methylation plays an important role in memory and long-term potentiation (LTP) in the hippocampus and is involved in programming the offspring epigenome in response to maternal care. Global DNA methylation is believed to be stable postnatally and to be similar across tissues in the adult mammal. It has also been a long held belief that DNA methyltransferases (DNMTs) play a very limited role in postmitotic tissues.
View Article and Find Full Text PDF