Resolving the cause of disease (= aetiology) in aquatic organisms is a challenging but essential goal, heightened by increasing disease prevalence in a changing climate and an interconnected world of anthropogenic pathogen spread. Emerging diseases play important roles in evolutionary ecology, wildlife conservation, the seafood industry, recreation, cultural practices, and human health. As we emerge from a global pandemic of zoonotic origin, we must focus on timely diagnosis to confirm aetiology and enable response to diseases in aquatic ecosystems.
View Article and Find Full Text PDFRecent global trade disruptions, due to blockage of the Suez Canal and cascading effects of COVID-19, have altered the movement patterns of commercial ships and may increase worldwide invasions of marine non-indigenous species. Organisms settle on the hulls and underwater surfaces of vessels and can accumulate rapidly, especially when vessels remain stationary during lay-ups and delays. Once present, organisms can persist on vessels for long-periods (months to years), with the potential to release propagules and seed invasions as ships visit ports across the global transportation network.
View Article and Find Full Text PDFPests of bivalve aquaculture are a challenging problem that can reduce productivity, profitability and sustainability. A range of pest management approaches have been developed for bivalve aquaculture, but a general absence of guiding frameworks has limited the scale and permanency of implementation. Applying principles of 'integrated pest management' (IPM) could change this paradigm to improve economic and environmental outcomes.
View Article and Find Full Text PDFBiofouling accumulation on ships' submerged surfaces typically occurs during stationary periods that render surfaces more susceptible to colonization than when underway. As a result, stationary periods longer than typical port residence times (hours to days), often referred to as lay-ups, can have deleterious effects on hull maintenance strategies, which aim to minimize biofouling impacts on ship operations and the likelihood of invasive species transfers. This experimental study tested the effects of different lay-up durations on the magnitude of biofouling, before and after exposure to flow, using fouling panels with three coating treatments (antifouling, foul-release, and controls), at two sites, and a portable field flume to simulate voyage sheer forces.
View Article and Find Full Text PDFHuman-caused shifts in carbon (C) cycling and biotic exchange are defining characteristics of the Anthropocene. In marine systems, saltmarsh, seagrass, and mangrove habitats-collectively known as "blue carbon" and coastal vegetated habitats (CVHs)-are a leading sequester of global C and increasingly impacted by exotic species invasions. There is growing interest in the effect of invasion by a diverse pool of exotic species on C storage and the implications for ecosystem-based management of these systems.
View Article and Find Full Text PDFBioinvasions are a significant force of change--and economic and ecological threat--in marine ecosystems. The threat now encroaches on Alaska, which has had relatively few invasions compared to other global regions, prompting need to develop new incursion response tools. We appraised five 'eco-friendly' immersion treatment options (dilute acetic acid, dilute bleach, freshwater, brine and hypoxia) at either minute- or hour-scale exposures to kill the invasive tunicate Didemnum vexillum.
View Article and Find Full Text PDFUnderstanding the factors contributing to expansion of nonnative populations is a critical step toward accurate risk assessment and effective management of biological invasions. Nevertheless, few studies have attempted explicitly to test hypotheses regarding factors driving invasive spread by seeking correlations between patterns of vector movement and patterns of genetic connectivity. Herein, we describe such an attempt for the invasive tunicate Styela clava in the northeastern Pacific.
View Article and Find Full Text PDFFouling of ships is an important historical and enduring transfer mechanism of marine nonindigenous species (NIS). Although containerships have risen to the forefront of global maritime shipping since the 1950s, few studies have directly sampled fouling communities on their submerged surfaces, and little is known about differences in the fouling characteristics among commercial ship types. Twenty-two in-service containerships at the Port of Oakland (San Francisco Bay, California) were sampled to test the hypothesis that the extent and taxonomic richness of fouling would be low on this type of ship, resulting from relatively fast speeds and short port durations.
View Article and Find Full Text PDFVector management is the primary method for reducing and preventing nonindigenous species (NIS) invasions and their ecological and economic consequences. This study was the first to examine the efficacy of in-water scrubbing using a submersible cleaning and maintenance platform (SCAMP) to prevent invertebrate species transfers from a heavily fouled obsolete vessel. Initially, prior to treatment, 37 species were recorded in a biofouling matrix that reached 30cm depth in some locations.
View Article and Find Full Text PDF