Publications by authors named "Ian Bourg"

Per- and polyfluoroalkyl substances (PFAS)─so-called "forever chemicals"─contaminate the drinking water of about 100 million people in the U.S. alone and are inefficiently removed by standard treatment techniques.

View Article and Find Full Text PDF

Knowledge Gap: The aggregation of clay minerals in liquid water exemplifies colloidal self-assembly in nature. These negatively charged aluminosilicate platelets interact through multiple mechanisms with different sensitivities to particle shape, surface charge, aqueous chemistry, and interparticle distance and exhibit complex aggregation structures. Experiments have difficulty resolving the associated colloidal assemblages at the scale of individual particles.

View Article and Find Full Text PDF
Article Synopsis
  • * This study focused on measuring the ice nucleation rate of 2-methyltetrols (2-MT), a component of certain organic aerosols, and found that as the aerosol's viscosity increases, its ice nucleation ability also increases significantly, especially when transitioning from liquid to semisolid states.
  • * A new model based on classical nucleation theory was created to quantify the relationship between viscosity and ice nucleation rate, which can be used in climate models to better represent cir
View Article and Find Full Text PDF

The formation of mineral-associated organic matter (MAOM) is a key phenomenon that may explain the slow turnover rates of carbon in soil organic matter (SOM). Despite this, important details pertaining to the structure and dynamics of MAOM remain unknown. In the present study, we use replica-exchange molecular dynamics simulations to gain insight into the structure of MAOM on the surface of prototypical phyllosilicate clay and Fe-oxide minerals, montmorillonite and goethite, fine-grained minerals that strongly impact soil carbon dynamics in temperate and tropical regions, respectively.

View Article and Find Full Text PDF

In both biological and engineered systems, polysaccharides offer a means of establishing structural stiffness without altering the availability of water. Notable examples include the extracellular matrix of prokaryotes and eukaryotes, artificial skin grafts, drug delivery materials, and gels for water harvesting. Proper design and modeling of these systems require detailed understanding of the behavior of water confined in pores narrower than about 1 nm.

View Article and Find Full Text PDF

The soft part of the Earth's surface - the ground beneath our feet - constitutes the basis for life and natural resources, yet a general physical understanding of the ground is still lacking. In this critical time of climate change, cross-pollination of scientific approaches is urgently needed to better understand the behavior of our planet's surface. The major topics in current research in this area cross different disciplines, spanning geosciences, and various aspects of engineering, material sciences, physics, chemistry, and biology.

View Article and Find Full Text PDF

In this work, we present a parameterization of Sr2+ and Ba2+ cations, which expands the alkali earth set of cations of the Madrid-2019 force field. We have tested the model against the experimental densities of eight different salts, namely, SrCl2, SrBr2, SrI2, Sr(NO3)2, BaCl2, BaBr2, BaI2, and Ba(NO3)2. The force field is able to reproduce the experimental densities of all these salts up to their solubility limit.

View Article and Find Full Text PDF

Hygroscopic growth of adsorbed water films on clay particles underlies a number of environmental science questions, from the air quality and climate impacts of mineral dust aerosols to the hydrology and mechanics of unsaturated soils and sedimentary rocks. Here, we use molecular dynamics (MD) simulations to establish the relation between adsorbed water film thickness () and relative humidity (RH) or disjoining pressure (Π), which has long been uncertain due to factors including sensitivity to particle shape, surface roughness, and aqueous chemistry. We present a new MD simulation approach that enables precise quantification of Π in films up to six water monolayers thick.

View Article and Find Full Text PDF

The abundance and isotopic composition of noble gases dissolved in water have many applications in the geosciences. In recent years, new analytical techniques have opened the door to the use of high-precision measurements of noble gas isotopes as tracers for groundwater hydrology, oceanography, mantle geochemistry, and paleoclimatology. These analytical advances have brought about new measurements of solubility equilibrium isotope effects (SEIEs) in water (i.

View Article and Find Full Text PDF

Swelling clay minerals control the hydrologic and mechanical properties of many soils, sediments, and sedimentary rocks. This important and well-known phenomenon remains challenging to predict because it emerges from complex multiscale couplings between aqueous chemistry and colloidal interaction mechanics in nanoporous clay assemblages, for which predictive models remain elusive. In particular, the predominant theory of colloidal interactions across fluid films, the widely used Derjaguin-Landau-Verwey-Overbeek model, fails to predict the ubiquitous existence of stable swelling states at interparticle distances below 3 nm that are stabilized by specific inter-atomic interactions in overlapping electrical double layers between the charged clay surfaces.

View Article and Find Full Text PDF

Coupled thermal, hydraulic, mechanical, and chemical (THMC) processes, such as desiccation-driven cracking or chemically driven fluid flow, significantly impact the performance of composite materials formed by fluid-mediated nanoparticle assembly, including energy storage materials, ordinary Portland cement, bioinorganic nanocomposites, liquid crystals, and engineered clay barriers used in the isolation of hazardous wastes. These couplings are particularly important in the isolation of high-level radioactive waste (HLRW), where heat generated by radioactive decay can drive the temperature up to at least 373 K in the engineered barrier. Here, we use large-scale all-atom molecular dynamics simulations of hydrated smectite clay nanoparticle assemblages to predict the fundamental THMC properties of hydrated compacted clay over a wide range of temperatures (up to 373 K) and dry densities relevant to HLRW management.

View Article and Find Full Text PDF

Interactions between water and organic molecules in sub-4 nm clusters play a significant role in the formation and growth of secondary organic aerosol (SOA) particles. However, a complete understanding of the relevant water microphysics has not yet been achieved due to challenges in the experimental characterization of soft nuclei. Here, we use molecular dynamics simulations to study the phase-mixing states, surface tension, water activity, and water accommodation coefficient of organic-water clusters representative of freshly nucleated SOA particles.

View Article and Find Full Text PDF

The tendency of organic contaminants (OCs) to partition between different phases is a key set of properties that underlie their human and ecological health impacts and the success of remediation efforts. A significant challenge associated with these efforts is the need for accurate partitioning data for an ever-expanding list of OCs and breakdown products. All-atom molecular dynamics (MD) simulations have the potential to help generate these data, but existing studies have applied these techniques only to a limited variety of OCs.

View Article and Find Full Text PDF

Biofilms are the predominant mode of microbial life on Earth, and so a deep understanding of microbial communities─and their impacts on environmental processes─requires a firm understanding of biofilm properties. Because of the importance of biofilms to their microbial inhabitants, microbes have evolved different ways of engineering and reconfiguring the matrix of extracellular polymeric substances (EPS) that constitute the main non-living component of biofilms. This ability makes it difficult to distinguish between the biotic and abiotic origins of biofilm properties.

View Article and Find Full Text PDF

Enhanced weathering (EW) is one of the most promising negative emissions technologies urgently needed to limit global warming to at least below 2 °C, a goal recently reaffirmed at the UN Global Climate Change conference (i.e., COP26).

View Article and Find Full Text PDF

The stability of adsorbed water films on mineral surfaces has far-reaching implications in the Earth, environmental, and materials sciences. Here, we use the basal plane of phlogopite mica, an atomically smooth surface of a natural mineral, to investigate water film structure and stability as a function of two features that modulate surface hydrophilicity: the type of adsorbed counterions (Na, K, and Cs) and the substitution of structural OH groups by F atoms. We use molecular dynamics simulations combined with in situ high-resolution X-ray reflectivity to examine surface hydration over a range of water loadings, from the adsorption of isolated water molecules to the formation of clusters and films.

View Article and Find Full Text PDF

Hypothesis: The migration of supercritical CO (scCO) injected into underground reservoirs as part of carbon capture and storage is influenced by organic contamination affecting mineral wettability. Molecular dynamics (MD) simulations of relevant systems that incorporate representative organic solutes allow detailed investigation of changes in fundamental interfacial and capillary properties.

Experiments: We use MD simulations to explore the effects of four organic solutes (quinoline, decanoic acid, coronene, sorgoleone) on the wettability of quartz by water in the presence of scCO.

View Article and Find Full Text PDF

Bacteria in porous media, such as soils, aquifers, and filters, often form surface-attached communities known as biofilms. Biofilms are affected by fluid flow through the porous medium, for example, for nutrient supply, and they, in turn, affect the flow. A striking example of this interplay is the strong intermittency in flow that can occur when biofilms nearly clog the porous medium.

View Article and Find Full Text PDF

In this study, we examine the spectral dielectric properties of liquid water in charged nanopores over a wide range of frequencies (0.3 GHz to 30 THz) and pore widths (0.3 to 5 nm).

View Article and Find Full Text PDF

Classical electrical double layer (EDL) models are foundational to the representation of atomistic structure and reactivity at charged interfaces. An important limitation to these models is their dependence on a mean-field approximation that is strictly valid for dilute aqueous solutions. Theoretical efforts to overcome this limitation are severely impeded by the lack of visualization of the structure over a wide range of ion concentration.

View Article and Find Full Text PDF

Detailed understanding of the couplings between fluid flow and solid deformation in porous media is crucial for the development of novel technologies relating to a wide range of geological and biological processes. A particularly challenging phenomenon that emerges from these couplings is the transition from fluid invasion to fracturing during multiphase flow. Previous studies have shown that this transition is highly sensitive to fluid flow rate, capillarity, and the structural properties of the porous medium.

View Article and Find Full Text PDF

Soil absorbs about 20% of anthropogenic carbon emissions annually, and clay is one of the key carbon-capture materials. Although sorption to clay is widely assumed to strongly retard the microbial decomposition of soil organic matter, enhanced degradation of clay-associated organic carbon has been observed under certain conditions. The conditions in which clay influences microbial decomposition remain uncertain because the mechanisms of clay-organic carbon interactions are not fully understood.

View Article and Find Full Text PDF

Molecular dynamics (MD) simulations are used to predict the partitioning of per- and polyfluoroalkyl substances (PFASs) to smectite clay, a high surface area adsorbent ubiquitous in temperate soils. Simulated systems model a stack of flexible smectite lamellae in contact with a bulk aqueous reservoir containing PFAS molecules. Perfluorobutanesulfonic acid (PFBS), perfluorohexanesulfonic acid (PFHxS), and perfluorooctanesulfonic acid (PFOS) are simulated at various aqueous chemistry conditions to examine the effect of PFAS size, salinity, and coordinating cation type (K, Na, and Ca) on adsorption.

View Article and Find Full Text PDF

Colloidal interactions between clay nanoparticles have been studied extensively because of their strong influence on the hydrology and mechanics of many soils and sedimentary media. The predominant theory used to describe these interactions is the Derjaguin-Landau-Verwey-Overbeek (DLVO) model, a framework widely applied in colloidal and interfacial science that accurately predicts the interactions between charged surfaces across water films at distances greater than ~ 3 nm (i.e.

View Article and Find Full Text PDF

Insights at the microscopic level of the process of radiocesium adsorption and interaction with clay mineral particles have improved substantially over the past several years, triggered by pressing social issues such as management of huge amounts of waste soil accumulated after the Fukushima Dai-ichi nuclear power plant accident. In particular, computer-based molecular modeling supported by advanced hardware and algorithms has proven to be a powerful approach. Its application can now generally encompass the full complexity of clay particle adsorption sites from basal surfaces to interlayers with inserted water molecules, to edges including fresh and weathered frayed ones.

View Article and Find Full Text PDF