Publications by authors named "Ian Baumgart"

Non-invasive, high-density electromyography (HD-EMG) has emerged as a useful tool to collect a range of neurophysiological motor information. Recent studies have demonstrated changes in EMG features that occur after stroke, which correlate with functional ability, highlighting their potential use as biomarkers. However, previous studies have largely explored these EMG features in isolation with individual electrodes to assess gross movements, limiting their potential clinical utility.

View Article and Find Full Text PDF

Objective: Seventy-five percent of stroke survivors, caregivers, and health care professionals (HCP) believe current therapy practices are insufficient, specifically calling out the upper extremity as an area where innovation is needed to develop highly usable prosthetics/orthotics for the stroke population. A promising method for controlling upper extremity technologies is to infer movement intention non-invasively from surface electromyography (EMG). However, existing technologies are often limited to research settings and struggle to meet user needs.

View Article and Find Full Text PDF

Myocardial ischemia is spontaneous, frequently asymptomatic, and contributes to fatal cardiovascular consequences. Importantly, myocardial sensory networks cannot reliably detect and correct myocardial ischemia on their own. Here, we demonstrate an artificially intelligent and responsive bioelectronic medicine, where an artificial neural network (ANN) supplements myocardial sensory networks, enabling reliable detection and correction of myocardial ischemia.

View Article and Find Full Text PDF

Objective: Clinical data suggest that efficacious vagus nerve stimulation (VNS) is limited by side effects such as cough and dyspnea that have stimulation thresholds lower than those for therapeutic outcomes. VNS side effects are putatively caused by activation of nearby muscles within the neck, via direct muscle activation or activation of nerve fibers innervating those muscles. Our goal was to determine the thresholds at which various VNS-evoked effects occur in the domestic pig—an animal model with vagus anatomy similar to human—using the bipolar helical lead deployed clinically.

View Article and Find Full Text PDF

Natural scenes often contain multiple objects and surfaces. However, how neurons in the visual cortex represent multiple visual stimuli is not well understood. Previous studies have shown that, when multiple stimuli compete in one feature domain, the evoked neuronal response is biased toward the stimulus that has a stronger signal strength.

View Article and Find Full Text PDF

Implanted neural stimulation and recording devices hold vast potential to treat a variety of neurological conditions, but the invasiveness, complexity, and cost of the implantation procedure greatly reduce access to an otherwise promising therapeutic approach. To address this need, a novel electrode that begins as an uncured, flowable prepolymer that can be injected around a neuroanatomical target to minimize surgical manipulation is developed. Referred to as the Injectrode, the electrode conforms to target structures forming an electrically conductive interface which is orders of magnitude less stiff than conventional neuromodulation electrodes.

View Article and Find Full Text PDF