Publications by authors named "Ian Ashworth"

A principal component was developed for 91 commonly accessible surfactants for use in surfactant-enabled organic reactions in water, an important approach for sustainable chemical processes. This map was built using 22 experimental and theoretical descriptors relevant to the physicochemical nature of these surfactant-enabled reactions, and advanced principal component analysis algorithms. It is comprised of all classes of surfactants, cationic, anionic, zwitterionic and neutral surfactants, including designer surfactants.

View Article and Find Full Text PDF

The potential for drug substances and drug products to contain low levels of N-nitrosamines is of continued interest to the pharmaceutical industry and regulatory authorities. Acid-promoted nitrosation mechanisms in solution have been investigated widely in the literature and are supported by kinetic modelling studies. Carbonyl compounds, particularly formaldehyde, which may be present as impurities in excipients and drug product packaging components or introduced during drug substance manufacturing processes are also known to catalyze nitrosation, but their impact on the risk of N-nitrosamine formation has not been systematically investigated to date.

View Article and Find Full Text PDF

N-Nitrosamines are a class of indirect acting mutagens, as their metabolic degradation leads to the formation of the DNA-alkylating diazonium ion. Following up on the in-silico identification of thousands of nitrosamines that can potentially be derived from small molecule drugs and their known impurities described in a previous publication, we have now re-analyzed this dataset to apply EMA's Carcinogenic Potency Categorization Approach (CPCA) introduced with the 16th revision of their Q&A document for Marketing Authorization Holders. We find that the majority of potential nitrosamines from secondary amine precursors belongs to potency categories 4 and 5, corresponding to an acceptable daily intake of 1500 ng, whereas nitrosamines from tertiary amine precursors distribute more evenly among all categories, resulting in a substantial number of structures that are assigned the more challenging acceptable intakes of 18 ng/day and 100 ng/day for potency categories 1 and 2, respectively.

View Article and Find Full Text PDF

The potential presence of N-nitrosamines in medicinal products has become a matter of concern for health authorities and pharmaceutical companies. However, very little information is available in published literature on N-nitrosamine formation within pharmaceutical drug products. In response, experiments were undertaken to test if secondary and tertiary amines present in solid drug products could undergo nitrosation due to the presence of nitrite in the excipients used in the manufacture of the drug product.

View Article and Find Full Text PDF

This article reports the outcome of an in silico analysis of more than 12,000 small molecule drugs and drug impurities, identifying the nitrosatable structures, assessing their potential to form nitrosamines under relevant conditions and the challenges to determine compound-specific AIs based on data available or read-across approaches for these nitrosamines and their acceptance by health authorities. Our data indicate that the presence of nitrosamines in pharmaceuticals is likely more prevalent than originally expected. In total, 40.

View Article and Find Full Text PDF

An early synthetic step in the synthesis of adavosertib, AZD1775, is the SAr reaction between 4-fluoronitrobenzene and 1-methylpiperazine in acetonitrile. A simple kinetics-based design of four reaction profiling experiments was used to investigate the kinetics of the reaction for the purpose of building a kinetic model. Fitting of the reaction profile data from two experiments conducted at 70 °C with a different excess of 1-methylpiperazine showed the reaction to follow a third-order rate law with a second-order dependence upon 1-methylpiperazine.

View Article and Find Full Text PDF

Fluorine-containing 1,3-dicarbonyl derivatives are essential building blocks for drug discovery and manufacture. To understand the factors that determine selectivity between mono- and di-fluorination of 1,3-dicarbonyl systems, we have performed kinetic studies of keto-enol tautomerism and fluorination processes. Photoketonization of 1,3-diaryl-1,3-dicarbonyl derivatives and their 2-fluoro analogues is coupled with relaxation kinetics to determine enolization rates.

View Article and Find Full Text PDF

Electrophilic N-F fluorination agents underpin the introduction of fluorine in aliphatic systems across drug and academic research. The choice of N-F reagent is currently determined through empirical experimentation in the absence of quantitative values for electrophilicities. Here we report an experimentally-determined kinetic reactivity scale for ten N-F fluorinating reagents, including Selectfluor™, NFSI, Synfluor™ and several -fluoropyridinium salts, in CHCN.

View Article and Find Full Text PDF

The final synthetic step in the synthesis of cediranib, AZD2171, 1, is the alkylation of a phenol with an alkyl halide to generate an ether. Our need to understand and control the formation of synthetic impurities generated in this step of the synthesis led us to investigate the kinetics and mechanism of the alkylation of indolphenol, 2, 4-[(4-fluoro-2-methyl-1 H-indol-5-yl)oxy]-6-methoxyquinazolin-7-ol, by chloropyrrolidine, 3, 1-(3-chloropropyl)pyrrolidine. Studies in 1-methyl-2-pyrrolidinone (NMP) established that the active alkylating agent is the azetidinium ion, 4, 4-azoniaspiro[3.

View Article and Find Full Text PDF

A selective aziridinium ring-opening was used to etherify an α-aryl-β-amino alcohol with stereochemical retention. This transformation was achieved in a biphasic system to address phenoxide solubility and the formation of a sulfonate ester impurity. The protecting group strategy was directed by a stability study of the activated α-aryl-β-amino alcohol in this system.

View Article and Find Full Text PDF

We observed that the product of a Buchwald-Hartwig coupling reaction extracted from the organic phase easily, relative to the starting aryl bromide as the pH was lowered. This was surprising given the similarity of their p K's. The product's extraction curve was also significantly steeper than expected.

View Article and Find Full Text PDF

Initiation rates for Grubbs and Grubbs-Hoveyda second generation pre-catalysts have been measured accurately in a range of solvents. Solvatochromic fitting reveals different dependencies on key solvent parameters for the two pre-catalysts, consistent with different mechanisms by which the Grubbs and Grubbs-Hoveyda pre-catalysts initiate.

View Article and Find Full Text PDF

The thermodynamic effective molarities of a series of simple cycloalkenes, synthesised from α,ω-dienes by reaction with Grubbs' second generation precatalyst, have been evaluated. Effective molarities were measured from a series of small scale metathesis reactions and agreed well with empirical predictions derived from the number of rotors and the product ring strain. The use of electronic structure calculations (at the M06-L/6-311G** level of theory) was explored for predicting thermodynamic effective molarities in ring-closing metathesis.

View Article and Find Full Text PDF

A published model for revealing solvent effects on the ring-closing metathesis (RCM) reaction of diethyl diallylmalonate 7 has been evaluated over a wider range of conditions, to assess its suitability for new applications. Unfortunately, the model is too flexible and the published rate constants do not agree with experimental studies in the literature. However, by fixing the values of important rate constants and restricting the concentration ranges studied, useful conclusions can be drawn about the relative rates of RCM of different substrates, precatalyst concentration can be simulated accurately and the effect of precatalyst loading can be anticipated.

View Article and Find Full Text PDF

Density function theory calculations reveal that the Grubbs-Hoveyda olefin metathesis pre-catalyst is activated by the formation of a complex in which the incoming alkene substrate and outgoing alkoxy ligand are both clearly associated with the ruthenium centre. The computed energies for reaction are in good agreement with the experimental values, reported here.

View Article and Find Full Text PDF

The kinetics of the HCl-catalyzed deprotection of the Boc-protected amine, thioester 2 to liberate AZD3409 1 have been studied in a mixture of toluene and propan-2-ol. The reaction rate was found to exhibit a second-order dependence upon the HCl concentration. This behavior was found to have a degree of generality as the deprotection of a second Boc-protected amine, tosylate 3 to yield amine 4 using HCl, sulfuric acid, and methane sulfonic acid showed the same kinetic dependence.

View Article and Find Full Text PDF

In the RCM reactions of a series of simple α,ω-dienes, the relative order of reactivity has been unambiguously determined showing that cyclohexene forms faster than cyclopentene or cycloheptene. 1,5-Hexadiene inhibits the RCM of 1,7-octadiene; 1,5-hexadiene cannot progress to the RCM product (cyclobutene) but forms an unexpectedly stable cyclic η(2)-complex.

View Article and Find Full Text PDF

This paper describes the synthesis of gold nanoparticles stabilized by two series of new dendritic disulfide ligands with alkene groups at their peripheries. Intraparticle cross-linking of the alkene groups around the periphery of each nanoparticle was achieved by Grubbs' metathesis. It was demonstrated that cross-linking of the organic ligand has no effect on the size or morphology of the inorganic gold core as determined by TEM and UV-vis measurements.

View Article and Find Full Text PDF

This paper reports the synthesis of dendrons containing a spermine unit at their focal point. The dendritic branching is based on l-lysine building blocks, and has terminal oligo(ethyleneglycol) units on the surface. As a consequence of the solubilising surface groups, these dendrons have high solubility in solvents with widely different polarities (e.

View Article and Find Full Text PDF

A series of gold nanoparticles stabilised by 'Newkome-type' dendritic branching has been synthesised and fully characterised. In particular, the properties and behaviour of these hybrid materials are compared with those of a previously reported set of nanoparticles stabilised by dendrons constructed using l-lysine building blocks. The rates of cyanide-induced nanoparticle decomposition were determined, and it was found that the rate of decomposition increased on the introduction of dendritic branching.

View Article and Find Full Text PDF

The self-assembly of dendritic building blocks containing multiple terminal alkenes on their surfaces yields soft gel-phase materials--subsequent Grubbs' metathesis leads to covalent cross-linking between the alkenes and the formation of robust swellable gels.

View Article and Find Full Text PDF

Gold nanoparticles with diameters of ca. 13 nm were synthesised by UV irradiation of a supramolecular organogel into which HAuCl4 and tetraoctylammonium bromide had been diffused-the gel network plays an essential role in nanoparticle stabilisation.

View Article and Find Full Text PDF

This paper reports a dendritic system which is capable of forming both one-component and two-component gels--interestingly the addition of the second component can either increase or decrease the degree of gelation, depending on dendritic generation.

View Article and Find Full Text PDF

This paper describes the gelation of symmetric dendrimers based on building blocks constructed from L-lysine. These dendrimers form gel-phase materials in nonpolar organic solvents. The thermal properties and concentration dependence of the gelation were investigated, and it was found that there was a clear dendritic effect on the behavior of the soft materials formed, with higher generation dendrimers giving rise to more thermally stable gels.

View Article and Find Full Text PDF