Temperature is a key factor mediating organismal fitness and has important consequences for species' ecology. While the mean effects of temperature on behaviour have been well-documented in ectotherms, how temperature alters behavioural variation among and within individuals, and whether this differs between the sexes, remains unclear. Such effects likely have ecological and evolutionary consequences, given that selection acts at the individual level.
View Article and Find Full Text PDFBiological invasions have significant ecological and economic impacts. Much attention is therefore focussed on predicting establishment and invasion success. Trait-based approaches are showing much promise, but are mostly restricted to investigations of plants.
View Article and Find Full Text PDFThe rarity of parthenogenetic species is typically attributed to the reduced genetic variability that accompanies the absence of sex, yet natural parthenogens can be surprisingly successful. Ecological success is often proposed to derive from hybridization through enhanced genetic diversity from repetitive origins or enhanced phenotypic breadth from heterosis. Here, we tested and rejected both hypotheses in a classic parthenogen, the diploid grasshopper .
View Article and Find Full Text PDFHow the diverse bacterial communities inhabiting desert soils maintain energy and carbon needs is much debated. Traditionally, most bacteria are thought to persist by using organic carbon synthesized by photoautotrophs following transient hydration events. Recent studies focused on Antarctic desert soils have revealed, however, that some bacteria use atmospheric trace gases, such as hydrogen (H), to conserve energy and fix carbon independently of photosynthesis.
View Article and Find Full Text PDFAs global climates change, alien species are anticipated to have a growing advantage relative to their indigenous counterparts, mediated through consistent trait differences between the groups. These insights have largely been developed based on interspecific comparisons using multiple species examined from different locations. Whether such consistent physiological trait differences are present within assemblages is not well understood, especially for animals.
View Article and Find Full Text PDFThe structure of tubular transport networks is thought to underlie much of biological regularity, from individuals to ecosystems. A core assumption of transport network models is either area-preserving or area-increasing branching, such that the summed cross-sectional area of all child branches is equal to or greater than the cross-sectional area of their respective parent branch. For insects, the most diverse group of animals, the assumption of area-preserving branching of tracheae is, however, based on measurements of a single individual and an assumption of gas exchange by diffusion.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
January 2020
Evolutionary theory proposes that maternal inheritance of mitochondria will facilitate the accumulation of mitochondrial DNA (mtDNA) mutations that are harmful to males but benign or beneficial to females. Furthermore, mtDNA haplotypes sampled from across a given species distribution are expected to differ in the number and identity of these 'male-harming' mutations they accumulate. Consequently, it is predicted that the genetic variation which delineates distinct mtDNA haplotypes of a given species should confer larger phenotypic effects on males than females (reflecting mtDNA mutations that are male-harming, but female-benign), or sexually antagonistic effects (reflecting mutations that are male-harming, but female-benefitting).
View Article and Find Full Text PDFThermal performance curves (TPCs) are intended to approximate the relationship between temperature and fitness, and are commonly integrated into species distributional models for understanding climate change responses. However, TPCs may vary across traits because selection and environmental sensitivity (plasticity) differ across traits or because the timing and duration of the temperature exposure, here termed time scale, may alter trait variation. Yet, the extent to which TPCs vary temporally and across traits is rarely considered in assessments of climate change responses.
View Article and Find Full Text PDFOne of the most extreme examples of parasite adaptation comes from terrestrial ectoparasites exploiting marine hosts. Despite the ubiquity of such ectoparasitism and its ecological and evolutionary importance, investigations of the responses of ectoparasites to conditions encountered on their hosts are rare. In the case of penguins and their ticks, current understanding suggests that ticks freely parasitize their hosts on land but are incapable of surviving extended oceanic journeys.
View Article and Find Full Text PDF