Associations between chronic diabetes complications and mitochondrial dysfunction represent a subject of major importance, given the diabetes pandemic and high personal and socioeconomic costs of diabetes and its complications. Modelling diabetes complications in inbred laboratory animals is challenging due to incomplete recapitulation of human features, but offer mechanistic insights and preclinical testing. As mitochondrial-based oxidative stress is implicated in human diabetic complications, herein we evaluate diabetes in a unique mouse model that harbors a mitochondrial DNA from a divergent mouse species (the 'xenomitochondrial mouse'), which has mild mitochondrial dysfunction and increased oxidative stress.
View Article and Find Full Text PDFRetinal ganglion cells are highly metabolically active requiring strictly regulated metabolism and functional mitochondria to keep ATP levels in physiological range. Imbalances in metabolism and mitochondrial mechanisms can be sufficient to induce a depletion of ATP, thus altering retinal ganglion cell viability and increasing cell susceptibility to death under stress. Altered metabolism and mitochondrial abnormalities have been demonstrated early in many optic neuropathies, including glaucoma, autosomal dominant optic atrophy, and Leber hereditary optic neuropathy.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are small packages that are released by almost all types of cells. While the role of EVs in pathogenesis of certain diseases such as cancer is well established, EVs role in ocular health and disease is still at early stages of investigation. Given the significant role of EVs in pathological development and progression of diseases such as cancer, EVs present a similar opportunity for investigation in ocular pathophysiology.
View Article and Find Full Text PDFThe growing number of next-generation sequencing (NGS) data presents a unique opportunity to study the combined impact of mitochondrial and nuclear-encoded genetic variation in complex disease. Mitochondrial DNA variants and in particular, heteroplasmic variants, are critical for determining human disease severity. While there are approaches for obtaining mitochondrial DNA variants from NGS data, these software do not account for the unique characteristics of mitochondrial genetics and can be inaccurate even for homoplasmic variants.
View Article and Find Full Text PDFMitochondrial OXPHOS generates most of the energy required for cellular function. OXPHOS biogenesis requires the coordinated expression of the nuclear and mitochondrial genomes. This represents a unique challenge that highlights the importance of nuclear-mitochondrial genetic communication to cellular function.
View Article and Find Full Text PDFImportance: Retinal ganglion cells endure significant metabolic stress in glaucoma but maintain capacity to recover function. Nicotinamide, a precursor of NAD , is low in serum of glaucoma patients and its supplementation provides robust protection of retinal ganglion cells in preclinical models. However, the potential of nicotinamide in human glaucoma is unknown.
View Article and Find Full Text PDFLeber hereditary optic neuropathy (LHON) is one of the most common primary mitochondrial diseases. It is caused by point mutations in mitochondrial DNA (mtDNA) genes and in some cases, it can result in irreversible vision loss, primarily in young men. It is currently unknown why LHON mutations affect only some carriers and whether bioenergetic compensation enables unaffected carriers to overcome mitochondrial impairment and preserve cellular function.
View Article and Find Full Text PDFThe lack of effective treatments for mitochondrial disease has seen the development of new approaches, including those that aim to stimulate mitochondrial biogenesis to boost ATP generation above a critical disease threshold. Here, we examine the effects of the peroxisome proliferator-activated receptor γ (PPARγ) activator pioglitazone (PioG), in combination with deoxyribonucleosides (dNs), on mitochondrial biogenesis in cybrid cells containing >90% of the m.3243A>G mutation associated with mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS).
View Article and Find Full Text PDFThe original version of this article unfortunately contained a mistake in the author name. The family name of Dr. Vanessa A.
View Article and Find Full Text PDFMitochondrial complex I dysfunction is the most common respiratory chain defect in human disorders and a hotspot for neurodegenerative diseases. Amyloid precursor protein (APP) and its non-amyloidogenic processing products, in particular soluble APP α (sAPPα), have been shown to provide neuroprotection in models of neuronal injury; however, APP-mediated protection from acute mitochondrial injury has not been previously reported. Here, we use the plant-derived pesticide rotenone, a potent complex I-specific mitochondrial inhibitor, to discover neuroprotective effects of APP and sAPPα in vitro, in neuronal cell lines over-expressing APP, and in vivo, in a retinal neuronal rotenone toxicity mouse model.
View Article and Find Full Text PDFDespite clear evidence of a neuroprotective physiological role of amyloid precursor protein (APP) and its non-amyloidogenic processing products, APP has been investigated mainly in animal and cellular models of amyloid pathology in the context of Alzheimer's disease. The rare familial mutations in APP and presenilin-1/2, which sometimes drive increased amyloid β (Aβ) production, may have unduly influenced Alzheimer's disease research. APP and its cleavage products play important roles in cellular and mitochondrial metabolism, but many studies focus solely on Aβ.
View Article and Find Full Text PDFPurpose: To determine whether mitochondrial DNA haplogroups or rare variants associate with primary open-angle glaucoma in subjects of European descent.
Methods: A case-control comparison of age- and sex-matched cohorts of 90 primary open-angle glaucoma patients and 95 population controls. Full mitochondrial DNA sequences from peripheral blood were generated by next-generation sequencing and compared to the revised Cambridge Reference Sequence to define mitochondrial haplogroups and variants.
Mitochondrial DNA copy number is strictly regulated during development as naive cells differentiate into mature cells to ensure that specific cell types have sufficient copies of mitochondrial DNA to perform their specialised functions. Mitochondrial DNA haplotypes are defined as specific regions of mitochondrial DNA that cluster with other mitochondrial sequences to show the phylogenetic origins of maternal lineages. Mitochondrial DNA haplotypes are associated with a range of phenotypes and disease.
View Article and Find Full Text PDFAmyloid precursor protein (APP) and its extracellular domain, soluble APP alpha (sAPPα) play important physiological and neuroprotective roles. However, rare forms of familial Alzheimer's disease are associated with mutations in APP that increase toxic amyloidogenic cleavage of APP and produce amyloid beta (Aβ) at the expense of sAPPα and other non-amyloidogenic fragments. Although mitochondrial dysfunction has become an established hallmark of neurotoxicity, the link between Aβ and mitochondrial function is unclear.
View Article and Find Full Text PDFWe sought to identify the impacts of Friedreich's ataxia (FRDA) on cardiomyocytes. FRDA is an autosomal recessive degenerative condition with neuronal and non-neuronal manifestations, the latter including progressive cardiomyopathy of the left ventricle, the leading cause of death in FRDA. Little is known about the cellular pathogenesis of FRDA in cardiomyocytes.
View Article and Find Full Text PDFCybrid technology was used to replace Leber hereditary optic neuropathy (LHON) causing mitochondrial DNA (mtDNA) mutations from patient-specific fibroblasts with wildtype mtDNA, and mutation-free induced pluripotent stem cells (iPSCs) were generated subsequently. Retinal ganglion cell (RGC) differentiation demonstrates increased cell death in LHON-RGCs and can be rescued in cybrid corrected RGCs.
View Article and Find Full Text PDFRetinal ganglion cells (RGCs) become increasingly vulnerable to injury with advancing age. We recently showed that this vulnerability can be strongly modified in mice by exercise. However, the characteristics and underlying mechanisms of retinal protection with exercise remain unknown.
View Article and Find Full Text PDFMitochondrial complex I (NADH:ubiquinone oxidoreductase) must be assembled precisely from 45 protein subunits for it to function correctly. One of its mitochondrial DNA (mtDNA) encoded subunits, ND1, is incorporated during the early stages of complex I assembly. However, little is known about how mutations in ND1 affect this assembly process.
View Article and Find Full Text PDFOxidative phosphorylation (OXPHOS) drives ATP production by mitochondria, which are dynamic organelles, constantly fusing and dividing to maintain kidney homoeostasis. In diabetic kidney disease (DKD), mitochondria appear dysfunctional, but the temporal development of diabetes-induced adaptations in mitochondrial structure and bioenergetics have not been previously documented. In the present study, we map the changes in mitochondrial dynamics and function in rat kidney mitochondria at 4, 8, 16 and 32 weeks of diabetes.
View Article and Find Full Text PDFApoptosis-inducing factor (AIF) is a mitochondrial flavoprotein with dual roles in redox signaling and programmed cell death. Deficiency in AIF is known to result in defective oxidative phosphorylation (OXPHOS), via loss of complex I activity and assembly in other tissues. Because the kidney relies on OXPHOS for metabolic homeostasis, we hypothesized that a decrease in AIF would result in chronic kidney disease (CKD).
View Article and Find Full Text PDFThe maternally inherited mitochondrial genome (mtDNA) is present in multimeric form within cells and harbors sequence variants (heteroplasmy). While a single mtDNA variant at high load can cause disease, naturally occurring variants likely persist at low levels across generations of healthy populations. To determine how naturally occurring variants are segregated and transmitted, we generated a mini-pig model, which originates from the same maternal ancestor.
View Article and Find Full Text PDFThe unique features of the mitochondrial genome, such as its high copy number and lack of defined mechanisms of recombination, have hampered efforts to manipulate its sequence to create specific mutations in mouse mtDNA. As such, the generation of in vivo mouse models of mtDNA disease has proved technically challenging. This chapter describes a unique approach to create mitochondrial oxidative phosphorylation (OXPHOS) defects in mouse ES cells by transferring mtDNA from different murid species into Mus musculus domesticus ES cells using cytoplasmic hybrid ("cybrid") fusion.
View Article and Find Full Text PDFPrimary Open Angle Glaucoma (POAG) is a common neurodegenerative disease characterized by the selective and gradual loss of retinal ganglion cells (RGCs). Aging and increased intraocular pressure (IOP) are glaucoma risk factors; nevertheless patients deteriorate at all levels of IOP, implying other causative factors. Recent evidence presents mitochondrial oxidative phosphorylation (OXPHOS) complex-I impairments in POAG.
View Article and Find Full Text PDFWe assessed structural elements of the retina in individuals with Friedreich ataxia (FRDA) and in mouse models of FRDA, as well as functions of the retinal pigment epithelium (RPE) in FRDA using induced pluripotent stem cells (iPSCs). We analyzed the retina of the FRDA mouse models YG22R and YG8R containing a human FRATAXIN (FXN) transgene by histology. We complemented this work with post-mortem evaluation of eyes from FRDA patients.
View Article and Find Full Text PDFWe describe a model of acute intraocular pressure (IOP) elevation in the mouse eye that induces reversible loss of inner retinal function associated with oxidative stress, glial cell activation and minimal loss of retinal ganglion cell (RGC) number. Young healthy mouse eyes recover inner retinal function within 7-days but more persistent functional loss is seen in older mice. Manipulation of diet and exercise further modify RGC recovery demonstrating the utility of this injury model for investigating lifestyle and therapeutic interventions.
View Article and Find Full Text PDF