Publications by authors named "Ian A Leahy"

Spin accumulation in semiconductor structures at room temperature and without magnetic fields is key to enable a broader range of optoelectronic functionality. Current efforts are limited owing to inherent inefficiencies associated with spin injection across semiconductor interfaces. Here we demonstrate spin injection across chiral halide perovskite/III-V interfaces achieving spin accumulation in a standard semiconductor III-V (AlGa)InP multiple quantum well light-emitting diode.

View Article and Find Full Text PDF

The rapidly expanding class of quantum materials known as topological semimetals (TSMs) displays unique transport properties, including a striking dependence of resistivity on applied magnetic field, that are of great interest for both scientific and technological reasons. So far, many possible sources of extraordinarily large nonsaturating magnetoresistance have been proposed. However, experimental signatures that can identify or discern the dominant mechanism and connect to available theories are scarce.

View Article and Find Full Text PDF

We report on the unusual behavior of the in-plane thermal conductivity κ and torque τ response in the Kitaev-Heisenberg material α-RuCl_{3}. κ shows a striking enhancement with linear growth beyond H=7  T, where magnetic order disappears, while τ for both of the in-plane symmetry directions shows an anomaly at the same field. The temperature and field dependence of κ are far more complex than conventional phonon and magnon contributions, and require us to invoke the presence of unconventional spin excitations whose properties are characteristic of a field-induced spin-liquid phase related to the enigmatic physics of the Kitaev model in an applied magnetic field.

View Article and Find Full Text PDF