This report describes the implementation of a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dye into the ligand framework of a borane. The redox-active nature of the BODIPY dye is utilized to generate a family of molecular boranes that are capable of exhibiting tunable Lewis acidities through BODIPY-based redox events.
View Article and Find Full Text PDFFluorescent dyes have been widely utilized as chemical sensors and in photodynamic therapy, but exploitation of their redox-active nature in chemical reactions has remained mostly unexplored. This report describes the isolation of a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-based radical. The redox-active nature of the BODIPY compound can be utilized in combination with a guanidine center, the basicity of which can be manipulated by greater than 14 pK units, to promote the conversion of protons and electrons into H-atoms for transfer to substrate molecules.
View Article and Find Full Text PDFHydride transfer promoted by the coordination of a substrate molecule to a Lewis acid is a critical step in many catalytic transformations. This computational study investigates the nature of the interaction between a polar substrate molecule and a Lewis acid by examining the influence of Lewis acid strength on the ability to reduce (transfer a hydride to) the coordinated substrate molecule. To investigate this interaction, the coordination of 10 probe substrates to seven Lewis acids was analyzed.
View Article and Find Full Text PDF