Publications by authors named "Ian A Fleming"

Escape of genetically distinct farmed Atlantic salmon (Salmo salar) raises concerns about their potential interactions with wild populations and the disruption of local adaptation through genetic admixture. It is often unknown whether genetic origin or common domestication effects will have a greater influence on consequences posed by escaped farmed fish. Previous work showed that domestication could have prevalent effects on the behaviour and growth of farmed salmon, independent of their genetic origin.

View Article and Find Full Text PDF
Article Synopsis
  • Gene flow between wild and domestic salmon populations is a significant concern, particularly regarding the influence of European salmon on North American aquaculture despite regulations against their use in Canada.
  • Evidence shows that farmed salmon in North America increasingly exhibit European ancestry, with some individuals having over 40% European genetic material.
  • Studies reveal that even juvenile wild salmon near aquaculture sites show signs of European heritage, indicating that hybridization and the potential impacts on wild populations are ongoing issues.
View Article and Find Full Text PDF

Due to multigeneration domestication selection, farmed and wild Atlantic salmon diverge genetically, which raises concerns about potential genetic interactions among escaped farmed and wild populations and disruption of local adaptation through introgression. When farmed strains of distant geographic origin are used, it is unknown whether the genetic consequences posed by escaped farmed fish will be greater than if more locally derived strains are used. Quantifying gene transcript expression differences among divergent farmed, wild and F  hybrids under controlled conditions is one of the ways to explore the consequences of hybridization.

View Article and Find Full Text PDF

Use of fast-growing domesticated and/or genetically modified strains of fish is becoming increasingly common in aquaculture, increasing the likelihood of deliberate or accidental introductions into the wild. To date, their ecological impacts on ecosystems remain to be quantified. Here, using a controlled phenotype manipulation by implanting growth hormone in juvenile Atlantic salmon (Salmo salar), we found that growth-enhanced fish display changes in several phenotypic traits known to be important for ecosystem functioning, such as habitat use, morphology and excretion rate.

View Article and Find Full Text PDF

Increasing conservation and animal-welfare concerns have driven the development of non-lethal sampling of fish populations, with the use of muscle tissue biopsies now being routinely applied as a sampling method in the wild. Crucial to the success of non-lethal sampling, however, is an evaluation of the short- and long-term consequences of the treatment and ultimately the determination of how these may affect organism mortality and other fitness-related traits. The current study evaluated the use of a dorsal muscle biopsies on post-spawned Atlantic salmon emigrating to sea and undertaking a 2-month long-feeding migration before returning to spawn.

View Article and Find Full Text PDF

Throughout their native range, wild Atlantic salmon populations are threatened by hybridization and introgression with escapees from net-pen salmon aquaculture. Although domestic-wild hybrid offspring have shown reduced fitness in laboratory and field experiments, consequential impacts on population abundance and genetic integrity remain difficult to predict in the field, in part because the strength of selection against domestic offspring is often unknown and context-dependent. Here, we follow a single large escape event of farmed Atlantic salmon in southern Newfoundland and monitor changes in the in-river proportions of hybrids and feral individuals over time using genetically based hybrid identification.

View Article and Find Full Text PDF

Escaped farmed Atlantic salmon interbreed with wild Atlantic salmon, leaving offspring that often have lower success in nature than pure wild salmon. On top of this, presence of farmed salmon descendants can impair production of wild-type recruits. We hypothesize that both these effects connect with farmed salmon having acquired higher standard metabolic rates (SMR, the energetic cost of self-maintenance) during domestication.

View Article and Find Full Text PDF

Domestication is rife with episodes of interbreeding between cultured and wild populations, potentially challenging adaptive variation in the wild. In Atlantic salmon, , the number of domesticated individuals far exceeds wild individuals, and escape events occur regularly, yet evidence of the magnitude and geographic scale of interbreeding resulting from individual escape events is lacking. We screened juvenile Atlantic salmon using 95 single nucleotide polymorphisms following a single, large aquaculture escape in the Northwest Atlantic and report the landscape-scale detection of hybrid and feral salmon (27.

View Article and Find Full Text PDF

Environmental heterogeneity can combine with evolutionary responses to create very dynamic and often locally independent populations across a landscape. Such complexity creates difficulties for managers trying to conserve populations across large areas. This study develops, applies, and tests the use of stochastic life history modeling and Monte Carlo simulation to assess management scenarios related to the realities of regional fisheries management and conservation.

View Article and Find Full Text PDF

Salmon produced by hatcheries have lower fitness in the wild than naturally produced salmon, but the factors underlying this difference remain an active area of research. We used genetic parentage analysis of alevins produced by experimentally mixed groups of wild and hatchery coho salmon (Oncorhynchus kisutch) to quantify male paternity in spawning hierarchies. We identify factors influencing paternity and revise previously published behavioural estimates of reproductive success for wild and hatchery males.

View Article and Find Full Text PDF

Captive rearing programs (hatcheries) are often used in conservation and management efforts for at-risk salmonid fish populations. However, hatcheries typically rear juveniles in environments that contrast starkly with natural conditions, which may lead to phenotypic and/or genetic changes that adversely affect the performance of juveniles upon their release to the wild. Environmental enrichment has been proposed as a mechanism to improve the efficacy of population restoration efforts from captive-rearing programs; in this study, we examine the influence of environmental enrichment during embryo and yolk-sac larval rearing on the transcriptome of Atlantic salmon (Salmo salar).

View Article and Find Full Text PDF

Adaptations at the gamete level (a) evolve quickly, (b) appear sensitive to inbreeding and outbreeding and (c) have important influences on potential to reproduce. We apply this understanding to problems posed by escaped farm salmon and measure their potential to reproduce in the wild. Farm Atlantic salmon (Salmo salar) are a threat to biodiversity, because they escape in large numbers and can introgress, dilute or disrupt locally adapted wild gene pools.

View Article and Find Full Text PDF

Should growth hormone (GH) transgenic Atlantic salmon escape, there may be the potential for ecological and genetic impacts on wild populations. This study compared the developmental rate and respiratory metabolism of GH transgenic and non-transgenic full sibling Atlantic salmon during early ontogeny; a life history period of intense selection that may provide critical insight into the fitness consequences of escaped transgenics. Transgenesis did not affect the routine oxygen consumption of eyed embryos, newly hatched larvae or first-feeding juveniles.

View Article and Find Full Text PDF

The success of invasive species is frequently attributed to phenotypic plasticity, which facilitates persistence in novel environments. Here we report on experimental tests to determine whether the intensity of cryptic coloration patterns in a global invader (brown trout, Salmo trutta) was primarily the result of plasticity or heritable variation. Juvenile F1 offspring were created through experimental crosses of wild-caught parents and reared for 30 days in the laboratory in a split-brood design on either light or dark-colored gravel substrate.

View Article and Find Full Text PDF

Interspecific hybridization is a route for transgenes from genetically modified (GM) animals to invade wild populations, yet the ecological effects and potential risks that may emerge from such hybridization are unknown. Through experimental crosses, we demonstrate transmission of a growth hormone transgene via hybridization between a candidate for commercial aquaculture production, GM Atlantic salmon (Salmo salar) and closely related wild brown trout (Salmo trutta). Transgenic hybrids were viable and grew more rapidly than transgenic salmon and other non-transgenic crosses in hatchery-like conditions.

View Article and Find Full Text PDF

Adaptive evolutionary change in only a few generations can increase the ability of non-native invasive species to spread, and yet adaptive divergence is rarely assessed in recently established populations. In this study, we experimentally test for evidence of fine-scale local adaptation in juvenile survival and growth among three populations of an invasive freshwater fish with reciprocal transplants and common-garden experiments. Despite intrinsic differences in habitat quality, in two of three populations we detected evidence of increased survival in 'home' versus 'away' environments with a Bayesian occupancy model fitted to mark-recapture data.

View Article and Find Full Text PDF

Sexually selected traits are expected to evolve to a point where their positive effect on reproductive success is counterbalanced by their negative effect on survival. At the genetic level, such a trade-off implies antagonistic pleiotropy between survival and the expression of sexually selected traits. Yet, the consequences of such a genetic architecture have been largely overlooked in studies examining how inbreeding influences sexually selected traits.

View Article and Find Full Text PDF

Growth hormone (GH) transgenic Atlantic salmon (Salmo salar) is one of the first transgenic animals being considered for commercial farming, yet ecological and genetic concerns remain should they enter the wild and interact reproductively with wild fish. Here, we provide the first empirical data reporting on the breeding performance of GH transgenic Atlantic salmon males, including that of an alternative male reproductive phenotype (i.e.

View Article and Find Full Text PDF

Polyandry and post-copulatory sexual selection provide opportunities for the evolution of female differential sperm selection. Here, we examined the influence of variation in major histocompatibility (MH) class I allelic composition upon sperm competition dynamics in Atlantic salmon. We ran in vitro fertilization competitions that mimicked the gametic microenvironment, and replicated a paired-male experimental design that allowed us to compare differences in sperm competition success among males when their sperm compete for eggs from females that were genetically either similar or dissimilar at the MH class I locus.

View Article and Find Full Text PDF

Various models that assume correlations between maternal phenotype and offspring environment predict adaptive variation in egg size within populations. Here we conduct a comparative test of these models using published data on fish egg size. Intrapopulation variation in egg size was most pronounced in fish with demersal eggs and larvae (median coefficient of variation [CV] at family level = 6.

View Article and Find Full Text PDF

Theory suggests an important role for population density in shaping adaptive landscapes through density-dependent selection. Here, we identify five methodological approaches for studying such selection, review the existing empirical evidence for it, and ask whether current declines in abundance can be expected to trigger evolutionary responses in salmonid fishes. Across taxa we find substantial amounts of evidence for population density influencing the location of adaptive peaks for a range of traits, and, in the presence of frequency dependence, changing the shape of selection (stabilizing versus disruptive).

View Article and Find Full Text PDF

Interactive effects of two or more life-history traits on fitness have the potential to create suites of coadapted traits. Propagule (egg or seed) size is one such trait that is believed to have undergone coadaptation with other traits. Phylogenetic analyses of salmonid fishes have revealed an association between large eggs and semelparity, leading to the question of which came first.

View Article and Find Full Text PDF

1. The coexistence of alternative reproductive phenotypes will probably be shaped by spatial and temporal variability in the environment. However, the effects of such variability on coexistence and the scale at which it operates are seldom understood.

View Article and Find Full Text PDF

Selection against large eggs has been proposed for aquatic environments, putatively because large eggs should have more difficulty obtaining the required oxygen. Here, we use brown trout (Salmo trutta) eggs to provide an experimental test of this hypothesis. At high levels of dissolved oxygen (14 mg l(-1)), egg survival was high and independent of egg size.

View Article and Find Full Text PDF