Publications by authors named "Iain Styles"

This study aimed to expand our understanding of myelin basic protein (MBP), a key component of central nervous system myelin, by developing a protocol to track and quantifying individual MBP particles during oligodendrocyte (OL) differentiation. MBP particle directionality, confinement, and diffusion were tracked by rapid TIRF and HILO imaging of Dendra2 tagged MBP in three stages of mouse oligodendroglia: OL precursors, early myelinating OLs, and mature myelinating OLs. The directionality and confinement of MBP particles increased at each stage consistent with progressive transport toward, and recruitment into, emerging myelin structures.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are valuable therapeutic targets for many diseases. A central question of GPCR drug discovery is to understand what determines the agonism or antagonism of ligands that bind them. Ligands exert their action via the interactions in the ligand binding pocket.

View Article and Find Full Text PDF

Liquid extraction surface analysis (LESA) coupled to native mass spectrometry (MS) presents unique analytical opportunities due to its sensitivity, speed, and automation. Here, we examine whether this tool can be used to quantitatively probe protein-ligand interactions through calculation of equilibrium dissociation constants ( values). We performed native LESA MS analyses for a well-characterized system comprising bovine carbonic anhydrase II and the ligands chlorothiazide, dansylamide, and sulfanilamide, and compared the results with those obtained from direct infusion mass spectrometry and surface plasmon resonance measurements.

View Article and Find Full Text PDF

Label-free spatial mapping of the noncovalent interactions of proteins in their tissue environment has the potential to revolutionize life sciences research by providing opportunities for the interrogation of disease progression, drug interactions, and structural and molecular biology more broadly. Here, we demonstrate mass spectrometry imaging of endogenous intact noncovalent protein-ligand complexes in rat brain. The spatial distributions of a range of ligand-bound and metal-bound proteins were mapped in thin tissue sections by use of nanospray-desorption electrospray ionization.

View Article and Find Full Text PDF

The combination of Liquid Chromatography and Mass Spectrometry (LC-MS) is commonly used to determine and characterize biologically active compounds because of its high resolution and sensitivity. In this work we explore the interpretation of LC-MS data using multivariate statistical analysis algorithms to extract useful chemical information and identify clusters of similar samples. Samples of leaves from 19 plants belonging to the Apiaceae family were analyzed in unified LC conditions by high- and low-resolution mass spectrometry in a wide range scan mode.

View Article and Find Full Text PDF

Data-driven deep learning approaches to image registration can be less accurate than conventional iterative approaches, especially when training data is limited. To address this issue and meanwhile retain the fast inference speed of deep learning, we propose VR-Net, a novel cascaded variational network for unsupervised deformable image registration. Using a variable splitting optimization scheme, we first convert the image registration problem, established in a generic variational framework, into two sub-problems, one with a point-wise, closed-form solution and the other one being a denoising problem.

View Article and Find Full Text PDF

RNA targeting is an exciting frontier for drug design. Intriguing targets include functional RNA structures in structurally-conserved untranslated regions (UTRs) of many lethal viruses. However, computational docking screens, valuable in protein structure targeting, fail for inherently flexible RNA.

View Article and Find Full Text PDF
Article Synopsis
  • The ESKAPE pathogens are a group of bacteria that cause many drug-resistant infections in hospitals, making rapid identification crucial.
  • Liquid extraction surface analysis mass spectrometry (LESA MS) has been previously used to analyze two of these pathogens, and this study expands its use to the remaining four ESKAPE species and related isolates.
  • Through this method, researchers identified 24 proteins from these bacteria, achieving a 79% success rate in accurately identifying the proteins and their species.
View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a major burden on healthcare services worldwide, where scientific and clinical innovation is needed to provide better understanding of biochemical damage to improve both pre-hospital assessment and intensive care monitoring. Here, we present an unconventional concept of using Raman spectroscopy to measure the biochemical response to the retina in an murine model of TBI. Through comparison to spectra from the brain and retina following injury, we elicit subtle spectral changes through the use of multivariate analysis, linked to a decrease in cardiolipin and indicating metabolic disruption.

View Article and Find Full Text PDF

Trauma is one of the leading causes of death in people under the age of 49 and complications due to wound infection are the primary cause of death in the first few days after injury. The ESKAPE pathogens are a group of bacteria that are a leading cause of hospital-acquired infections and a major concern in terms of antibiotic resistance. Here, we demonstrate a novel and highly accurate approach for the rapid identification of ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.

View Article and Find Full Text PDF

The assessment of platelet spreading through light microscopy, and the subsequent quantification of parameters such as surface area and circularity, is a key assay for many platelet biologists. Here we present an analysis workflow which robustly segments individual platelets to facilitate the analysis of large numbers of cells while minimizing user bias. Image segmentation is performed by interactive learning and touching platelets are separated with an efficient semi-automated protocol.

View Article and Find Full Text PDF

We have previously demonstrated native liquid extraction surface analysis (LESA) mass spectrometry imaging of small intact proteins in thin tissue sections. We also showed calculation of collision cross sections for specific proteins extracted from discrete locations in tissue by LESA traveling wave ion mobility spectrometry (TWIMS). Here, we demonstrate an integrated native LESA TWIMS mass spectrometry imaging (MSI) workflow, in which ion mobility separation is central to the imaging experiment and which provides spatial, conformational, and mass information on endogenous proteins in a single experiment.

View Article and Find Full Text PDF

The benefits of high field asymmetric waveform ion mobility spectrometry (FAIMS) for mass spectrometry imaging of intact proteins in thin tissue sections have been demonstrated previously. In those works, a planar FAIMS device coupled with a Thermo Elite mass spectrometer was employed. Here, we have evaluated a newly introduced cylindrical FAIMS device (the FAIMS Pro) coupled with a Thermo Fusion Lumos mass spectrometer for liquid extraction surface analysis mass spectrometry imaging of intact proteins in thin tissue sections from rat testes, kidney, and brain.

View Article and Find Full Text PDF

Previously, we have demonstrated the effect of salt bridges on the electron capture dissociation mass spectrometry behavior of synthetic model phosphopeptides and applied an ion mobility spectrometry/molecular modeling approach to rationalize the findings in terms of peptide ion structure. Here, we develop and apply the approach to a biologically derived phosphopeptide. Specifically, we have investigated variants of a 15-mer phosphopeptide VVGARRSsWRVVSSI (s denotes phosphorylated Ser) derived from Akt1 substrate 14-3-3-ζ, which contains the phosphorylation motif RRSsWR.

View Article and Find Full Text PDF

The forward model in diffuse optical tomography (DOT) describes how light propagates through a turbid medium. It is often approximated by a diffusion equation (DE) that is numerically discretized by the classical finite element method (FEM). We propose a nonlocal diffusion equation (NDE) as a new forward model for DOT, the discretization of which is carried out with an efficient graph-based numerical method (GNM).

View Article and Find Full Text PDF

Absolute quantification of proteins in tissue is important for numerous fields of study. Liquid chromatography-mass spectrometry (LC-MS) methods are the norm but typically involve lengthy sample preparation including tissue homogenization, which results in the loss of information relating to spatial distribution. Here, we propose liquid extraction surface analysis (LESA) mass spectrometry (MS) of stable isotope labeled mimetic tissue models for the spatially resolved quantification of intact ubiquitin in rat and mouse brain tissue.

View Article and Find Full Text PDF

Motivation: Localization microscopy data is represented by a set of spatial coordinates, each corresponding to a single detection, that form a point cloud. This can be analyzed either by rendering an image from these coordinates, or by analyzing the point cloud directly. Analysis of this type has focused on clustering detections into distinct groups which produces measurements such as cluster area, but has limited capacity to quantify complex molecular organization and nano-structure.

View Article and Find Full Text PDF

Raman spectroscopy shows promise as a tool for timely diagnostics via in-vivo spectroscopy of the eye, for a number of ophthalmic diseases. By measuring the inelastic scattering of light, Raman spectroscopy is able to reveal detailed chemical characteristics, but is an inherently weak effect resulting in noisy complex signal, which is often difficult to analyse. Here, we embraced that noise to develop the self-optimising Kohonen index network (SKiNET), and provide a generic framework for multivariate analysis that simultaneously provides dimensionality reduction, feature extraction and multi-class classification as part of a seamless interface.

View Article and Find Full Text PDF

Total variation (TV) is a powerful regularization method that has been widely applied in different imaging applications, but is difficult to apply to diffuse optical tomography (DOT) image reconstruction (inverse problem) due to unstructured discretization of complex geometries, non-linearity of the data fitting and regularization terms, and non-differentiability of the regularization term. We develop several approaches to overcome these difficulties by: i) defining discrete differential operators for TV regularization using both finite element and graph representations; ii) developing an optimization algorithm based on the alternating direction method of multipliers (ADMM) for the non-differentiable and non-linear minimization problem; iii) investigating isotropic and anisotropic variants of TV regularization, and comparing their finite element (FEM)- and graph-based implementations. These approaches are evaluated on experiments on simulated data and real data acquired from a tissue phantom.

View Article and Find Full Text PDF

We report an approach for visualizing DNA sequence and using these 'DNA barcodes' to search complex mixtures of genomic material for DNA molecules of interest. We demonstrate three applications of this methodology; identifying specific molecules of interest from a dataset containing gigabasepairs of genome; identification of a bacterium from such a dataset and, finally, by locating infecting virus molecules in a background of human genomic material. As a result of the dense fluorescent labelling of the DNA, individual barcodes of the order 40 kb pairs in length can be reliably identified.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is an inflammatory joint disease often affecting the hands, which if untreated causes disability. Diffuse optical tomography (DOT) provides information about the underlying functional properties of biological tissue. To detect pathophysiological changes in inflamed RA joints, a good understanding of the baseline values for healthy subjects is first required.

View Article and Find Full Text PDF

Spectrally constrained diffuse optical tomography (SCDOT) is known to improve reconstruction in diffuse optical imaging; constraining the reconstruction by coupling the optical properties across multiple wavelengths suppresses artefacts in the resulting reconstructed images. In other work, L-norm regularization has been shown to improve certain types of image reconstruction problems as its sparsity-promoting properties render it robust against noise and enable the preservation of edges in images, but because the L-norm is non-differentiable, it is not always simple to implement. In this work, we show how to incorporate L regularization into SCDOT.

View Article and Find Full Text PDF

Clustering is widely used in MSI to segment anatomical features and differentiate tissue types, but existing approaches are both CPU and memory-intensive, limiting their application to small, single data sets. We propose a new approach that uses a graph-based algorithm with a two-phase sampling method that overcomes this limitation. We demonstrate the algorithm on a range of sample types and show that it can segment anatomical features that are not identified using commonly employed algorithms in MSI, and we validate our results on synthetic MSI data.

View Article and Find Full Text PDF

Confocal microscopy is a powerful tool for the study of cellular receptor trafficking and endocytosis. Unbiased and robust image analysis workflows are required for the identification, and study, of aberrant trafficking. After a brief review of related strategies, identifying both good and bad practice, custom workflows for the analysis of live cell 3D time-lapse data are presented.

View Article and Find Full Text PDF

A multi-wavelength diffuse optical tomography (DOT) system has been developed to directly extract physiological information, such as total haemoglobin concentration, from tissue in human hand joints. Novel methods for 3D surface imaging and spectrally constrained image reconstruction are introduced and their potential application to imaging of rheumatoid arthritis is discussed. Results are presented from simulation studies as well as experiments using phantoms and data from imaging of three healthy volunteers.

View Article and Find Full Text PDF