The prevalence of cardiometabolic heart failure with preserved ejection fraction (HFpEF) continues to grow, representing over half of heart failure cases in the United States. As no specific medication for HFpEF exists, treatment guidelines focus on the management of comorbidities related to metabolic syndrome (e.g.
View Article and Find Full Text PDFHeart failure with preserved ejection fraction (HFpEF) is a major cardiovascular disorder with increasing prevalence and a limited range of targeted treatment options. While HFpEF can be derived from several different etiologies, much of the current growth in the disease is being driven by metabolic dysfunction (e.g.
View Article and Find Full Text PDFGCN5L1, also known as BLOC1S1 and BLOS1, is a small intracellular protein involved in many key biological processes. Over the last decade, GCN5L1 has been implicated in the regulation of protein lysine acetylation, energy metabolism, endo-lysosomal function, and cellular immune pathways. An increasing number of published papers have used commercially-available reagents to interrogate GCN5L1 function.
View Article and Find Full Text PDFCardiac mitochondrial dysfunction is a critical contributor to the pathogenesis of aging and many age-related conditions. As such, complete control of mitochondrial function is critical to maintain cardiac efficiency in the aged heart. Lysine acetylation is a reversible post-translational modification shown to regulate several mitochondrial metabolic and biochemical processes.
View Article and Find Full Text PDFCardiomyocyte apoptosis and cardiac fibrosis are the leading causes of mortality in patients with ischemic heart disease. As such, these processes represent potential therapeutic targets to treat heart failure resulting from ischemic insult. We previously demonstrated that the mitochondrial acetyltransferase protein GCN5L1 regulates cardiomyocyte cytoprotective signaling in ischemia-reperfusion injury in vivo and hypoxia-reoxygenation injury in vitro.
View Article and Find Full Text PDFThe bispyridinium oxime HI-6 DMS is in development as an improved therapy for the treatment of patients exposed to organophosphorus nerve agents. The aim of the work described in this paper was to provide non-clinical data to support regulatory approval of HI-6 DMS, by demonstrating efficacy against an oxime-sensitive agent, GB and an oxime-resistant agent, GD. We investigated the dose-dependent protection afforded by therapy including atropine, avizafone and HI-6 DMS in guinea-pigs challenged with GB or GD.
View Article and Find Full Text PDFCardiomyocyte apoptosis and cardiac fibrosis are the leading causes of mortality in patients with ischemic heart disease. As such, these processes represent potential therapeutic targets to treat heart failure resulting from ischemic insult. We previously demonstrated that the mitochondrial acetyltransferase protein GCN5L1 regulates cardiomyocyte cytoprotective signaling in ischemia-reperfusion injury and hypoxia-reoxygenation injury .
View Article and Find Full Text PDFGCN5L1, also known as BLOC1S1 and BLOS1, is a small intracellular protein involved in a number of key biological processes. Over the last decade, GCN5L1 has been implicated in the regulation of protein lysine acetylation, energy metabolism, endo-lysosomal function, and cellular immune pathways. An increasing number of published papers have used commercially-available reagents to interrogate GCN5L1 function.
View Article and Find Full Text PDFGeneral control of amino acid synthesis 5-like 1 (GCN5L1) was previously identified as a key regulator of protein lysine acetylation in mitochondria. Subsequent studies demonstrated that GCN5L1 regulates the acetylation status and activity of mitochondrial fuel substrate metabolism enzymes. However, the role of GCN5L1 in response to chronic hemodynamic stress is largely unknown.
View Article and Find Full Text PDFLysine acetylation of proteins has emerged as a key posttranslational modification (PTM) that regulates mitochondrial metabolism. Acetylation may regulate energy metabolism by inhibiting and affecting the stability of metabolic enzymes and oxidative phosphorylation (OxPhos) subunits. Although protein turnover can be easily measured, due to the low abundance of modified proteins, it has been difficult to evaluate the effect of acetylation on the stability of proteins in vivo.
View Article and Find Full Text PDFG-protein coupled receptors (GPCRs) mediate signal transduction from the cellular surface to intracellular metabolic pathways. While the function of many GPCRs has been delineated previously, a significant number require further characterization to elucidate their cellular function. G-protein coupled receptor 19 (GPR19) is a poorly characterized class A GPCR which has been implicated in the regulation of circadian rhythm, tumor metastasis, and mitochondrial homeostasis.
View Article and Find Full Text PDFLeft ventricular diastolic dysfunction is a structural and functional condition that precedes the development of heart failure with preserved ejection fraction (HFpEF). The etiology of diastolic dysfunction includes alterations in fuel substrate metabolism that negatively impact cardiac bioenergetics, and may precipitate the eventual transition to heart failure. To date, the molecular mechanisms that regulate early changes in fuel metabolism leading to diastolic dysfunction remain unclear.
View Article and Find Full Text PDFAims: Brain-derived neurotrophic factor (BDNF) is markedly decreased in heart failure patients. Both BDNF and its receptor, tropomyosin-related kinase receptor (TrkB), are expressed in cardiomyocytes; however, the role of myocardial BDNF signalling in cardiac pathophysiology is poorly understood. Here, we investigated the role of BDNF/TrkB signalling in cardiac stress response to exercise and pathological stress.
View Article and Find Full Text PDFSodium-glucose co-transporter type 2 (SGLT2) inhibitor therapy to treat type 2 diabetes unexpectedly reduced all-cause mortality and hospitalization due to heart failure in several large-scale clinical trials, and has since been shown to produce similar cardiovascular disease-protective effects in patients without diabetes. How SGLT2 inhibitor therapy improves cardiovascular disease outcomes remains incompletely understood. Metabolic flexibility refers to the ability of a cell or organ to adjust its use of metabolic substrates, such as glucose or fatty acids, in response to physiological or pathophysiological conditions, and is a feature of a healthy heart that may be lost during diabetic cardiomyopathy and in the failing heart.
View Article and Find Full Text PDFThe IEEE and ICNIRP had specified a maximum permissible exposure for instantaneous peak electric field of 100 kV/m. However, no rationale was given for this limit. A novel exposure system was designed through a detailed process of analytical analysis, numerical modelling and prototype testing.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
May 2022
Reversible lysine acetylation regulates the activity of cardiac metabolic enzymes, including those controlling fuel substrate metabolism. Mitochondrial-targeted GCN5L1 and SIRT3 have been shown to regulate the acetylation status of mitochondrial enzymes, but the role that lysine acetylation plays in driving metabolic differences between male and female hearts is not currently known. In this study, we describe a significant difference in GCN5L1 levels between male and female mouse hearts, and in the hearts of women between post- and premenopausal age.
View Article and Find Full Text PDFPrevious studies have shown that treatment with recombinant adropin, a circulating peptide secreted by the liver and brain, restores glucose utilization in the hearts of diet-induced obese mice. This restoration of fuel substrate flexibility, which is lost in obese and diabetic animals, has the potential to improve contractile function in the diabetic heart. Using an approach, we examined whether short-term adropin treatment could enhance cardiac function in a mouse model of diet-induced obesity.
View Article and Find Full Text PDFChanges in the acetylation status of mitochondrial proteins have been linked to the development of metabolic dysfunction in a number of tissues. Increased lysine acetylation has been reported in the hearts of obese mice, and is associated with changes in fuel metabolism, redox status, and mitochondrial oxidative phosphorylation. In this study, we examined whether diet-induced changes in the acetylation of mitochondrial acyl-CoA dehydrogenases affected fatty acid oxidation enzyme activity and contractile function in the obese mouse heart.
View Article and Find Full Text PDFInt J Environ Res Public Health
January 2021
Recent studies indicate the accepted concept of using land-use mix (LUM) to promote physical activity is ineffective and even counteractive in the Chinese context. Before considering LUM as a whole, different amenity types need to be respectively analyzed in relation to various functions and demands. This study aims to examine the specific associations between food-related amenities and perceived daily walking duration (WD) in small Chinese cities.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
January 2021
Adropin is a nutritionally regulated peptide hormone, secreted primarily by the liver, which modulates metabolic homeostasis in a number of tissues. Growing evidence suggests that adropin is an important regulatory component in a number of cardiovascular pathologies, and may be central to the control of cardiac fuel metabolism and vascular function. In this mini-review, we examine the known facets of adropin biology, discuss open questions in the field, and speculate on the therapeutic potential of targeting adropin-related signaling pathways in cardiovascular diseases.
View Article and Find Full Text PDFCardiac energetic dysfunction has been reported in patients with type 2 diabetes (T2D) and is an independent predictor of mortality. Identification of the mechanisms driving mitochondrial dysfunction, and therapeutic strategies to rescue these modifications, will improve myocardial energetics in T2D. We demonstrate using 31P-magnetic resonance spectroscopy (31P-MRS) that decreased cardiac ATP and phosphocreatine (PCr) concentrations occurred before contractile dysfunction or a reduction in PCr/ATP ratio in T2D.
View Article and Find Full Text PDF