Publications by authors named "Iain Mcculloch"

We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fullerene by weight, have better photoluminescence quenching and lower absorption than the nonintercalated blends, which optimize at 1:1. Understanding how intercalation affects performance will enable more effective design of polymer:fullerene solar cells.

View Article and Find Full Text PDF

Transient absorption spectroscopy is employed to monitor charge photogeneration in polythiophene-perylene diimide blend films; in contrast to polythiophene-PCBM blends, efficient charge photogeneration is observed even for small energetic driving forces.

View Article and Find Full Text PDF

We found that 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)C(61) (PCBM) molecules make a distorted asymmetric body-centered cubic crystal nanostructure in the bulk heterojunction films of reigoregular poly(3-hexylthiophene) and PCBM. The wider angle of distortion in the PCBM nanocrystals was approximately 96 degrees , which can be assigned to the influence of the attached side group to the fullerene ball of PCBM to bestow solubility. Atom concentration analysis showed that after thermal annealing the PCBM nanocrystals do preferentially distribute above the layer of P3HT nanocrystals inside devices.

View Article and Find Full Text PDF

The electrical performance of organic semiconducting polymers in field-effect transistor devices is now sufficient for initial low complexity circuit applications. To achieve high performance, either operation in an inert atmosphere or a hydrophobic surface treatment and annealing step is typically required. In this communication we report a strategy to prepare fully air stable, amorphous semiconducting polymers which can achieve charge carrier mobilities in the range of 0.

View Article and Find Full Text PDF

The large-scale manufacture of organic electronics devices becomes more feasible if the molecular orientation and morphology of the semiconductor can be controlled. Here, we report on a previously unidentified crystal shape of terraced nanoscale "ribbons" in thin films of poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) (pBTTT). The ribbons form after a pBTTT film is heated above its highest temperature phase transition.

View Article and Find Full Text PDF

An alignable, liquid-crystalline fluorene fused-ring thienothiophene copolymer has been synthesized with electroluminescence peaking at 410 nm for deep blue, polarised emission in polymer light-emitting diodes, light-emitting transistors and photonic structures.

View Article and Find Full Text PDF

We report herein a comparison of the photophysics of a series of polythiophenes with ionization potentials ranging from 4.8 to 5.6 eV as pristine films and when blended with 5 wt % 1-(3-methoxycarbonyl)propyl-1-phenyl-[6,6]C61 (PCBM).

View Article and Find Full Text PDF

Depositing a fused-ring thieno-thiophene polymer on different self-assembled monolayers indicates that varying the SAM surface energy changes the FET mobility and turn-on voltage by varying polymer crystallinity at the buried interface.

View Article and Find Full Text PDF

The synthesis of regioregular poly(3-hexyl)selenophene is reported, and its optical and electrical properties are compared to those of regioregular poly(3-hexyl)thiophene.

View Article and Find Full Text PDF

By comparing the changes in pi-pi* absorption with the transconductance in PEO-LiClO4 electrolyte-gated FETs, we have demonstrated that the high channel currents obtained at low gate voltages result from reversible electrochemical doping of the semiconducting polymer film. At low temperatures, the conductivity of the electrochemically doped poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene), PBTTT-C14, is nonlinear with a crossover from dsigma(T)/dT > 0 to dsigma(T)/dT approximately 0 as a function of the source-drain voltage. High current densities, up to 10(6) A/cm2 at 4.

View Article and Find Full Text PDF

We report a new cationic poly(phenylene ethynylene) (PPE) derivative that exhibits strong amplified fluorescence quenching in the presence of electron-deficient species, yielding high Stern-Volmer coefficients of 4.7 × 10 M in aqueous solutions. Importantly, with the addition of appropriate non-ionic surfactants, the polymer is found to retain its excellent sensitivity even when transferred to high ionic strength buffered media, which have previously been shown to suppress the amplified quenching effect in other polyelectrolyte systems.

View Article and Find Full Text PDF

[structure: see text] We report the synthesis of a novel end-capped sexithiophene derivative bearing two pendent, fused tetrathiafulvalene (TTF) units linked to the main chain through 1,4-dithiin heterocycles. Cyclic voltammetry and absorption spectroscopy are used to investigate the electronic properties of this hybrid electroactive material. The oligomer has a band gap of 2.

View Article and Find Full Text PDF

Poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene), PBTTT, is a semiconducting polymer that forms thin film transistors (TFTs) with high field effect mobility on silicon dioxide dielectrics that are treated with alkyltrichlorosilanes ( approximately 0.2 to 0.5 cm2/V s) but forms TFTs with poor mobility on bare silicon dioxide (<0.

View Article and Find Full Text PDF

Efficient triplet formation is observed for films of high ionisation potential polythiophenes blended with a fullerene derivative, and assigned to formation via geminate charge recombination of bound radical ion pair states.

View Article and Find Full Text PDF

Here we report a study of the polymer chain/nanocrystal ordering in thin films (nanolayers) of regioregular poly(3-hexylthiophene) (P3HT) and blends of P3HT with a soluble fullerene derivative. A detailed analysis has been made of two dimensional (2D) grazing incidence X-ray diffraction (GIXRD) measurements with synchrotron radiation. P3HT samples with three different levels of regioregularity (RR) were synthesized and used to investigate the influence of RR on the chain ordering in thin films.

View Article and Find Full Text PDF

Organic electronics technology, in which at least the semiconducting component of the integrated circuit is an organic material, offers the potential for fabrication of electronic products by low-cost printing technologies, such as ink jet, gravure offset lithography and flexography. The products will typically be of lower performance than those using the present state of the art single crystal or polysilicon transistors, but comparable to amorphous silicon. A range of prototypes are under development, including rollable electrophoretic displays, active matrix liquid crystal (LC) displays, flexible organic light emitting diode displays, low frequency radio frequency identification tag and other low performance electronics.

View Article and Find Full Text PDF

We have studied the carrier transport in poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) field-effect transistors (FETs) at very high field-induced carrier densities (10(15) cm(-2)) using a polymer electrolyte as gate and gate dielectric. At room temperature, we find high current densities, 2 x 10(6) A/cm(2), and high metallic conductivities, 10(4) S/cm, in the FET channel; at 4.2 K, the current density is sustained at 10(7) A/cm(2).

View Article and Find Full Text PDF

Organic semiconductors that can be fabricated by simple processing techniques and possess excellent electrical performance, are key requirements in the progress of organic electronics. Both high semiconductor charge-carrier mobility, optimized through understanding and control of the semiconductor microstructure, and stability of the semiconductor to ambient electrochemical oxidative processes are required. We report on new semiconducting liquid-crystalline thieno[3,2-b ]thiophene polymers, the enhancement in charge-carrier mobility achieved through highly organized morphology from processing in the mesophase, and the effects of exposure to both ambient and low-humidity air on the performance of transistor devices.

View Article and Find Full Text PDF

This work describes a new design methodology that allows the preparation of air stable, semiconducting thiophene polymers with high charge carrier mobilities. The incorporation of thieno[2,3-b]thiophene into a polythiophene backbone introduces cross-conjugated double bonds that disfavor full delocalization, leading to high ionization potential in comparison to a fully conjugated polythiophene, with no reduction in charge carrier mobility. The resulting solution processable polymers exhibit charge carrier mobilities up to 0.

View Article and Find Full Text PDF

A method for the fabrication of polymeric thin-film transistors (TFTs) by lamination is described. Poly(dimethylsiloxane) stamps were used to delaminate thin films of semiconducting polymers from silicon wafers coated with a self-assembled monolayer (SAM) formed from octyltrichlorosilane. These supported films were laminated onto electrode structures to form coplanar TFTs.

View Article and Find Full Text PDF