Protected areas are increasingly promoted for their capacity to sequester carbon, alongside biodiversity benefits. However, we have limited understanding of whether they are effective at reducing deforestation and degradation, or promoting vegetation growth, and the impact that this has on changes to aboveground woody carbon stocks. Here we present a new satellite radar-based map of vegetation carbon change across southern Africa's woodlands and combine this with a matching approach to assess the effect of protected areas on carbon dynamics.
View Article and Find Full Text PDFPositive biodiversity-ecosystem function relationships (BEFRs) have been widely documented, but it is unclear if BEFRs should be expected in disturbance-driven systems. Disturbance may limit competition and niche differentiation, which are frequently posited to underlie BEFRs. We provide the first exploration of the relationship between tree species diversity and biomass, one measure of ecosystem function, across southern African woodlands and savannas, an ecological system rife with disturbance from fire, herbivores and humans.
View Article and Find Full Text PDFLand use carbon fluxes are major uncertainties in the global carbon cycle. This is because carbon stocks, and the extent of deforestation, degradation and biomass growth remain poorly resolved, particularly in the densely populated savannas which dominate the tropics. Here we quantify changes in aboveground woody carbon stocks from 2007-2010 in the world's largest savanna-the southern African woodlands.
View Article and Find Full Text PDFAfrican savannas and dry forests represent a large, but poorly quantified store of biomass carbon and biodiversity. Improving this information is hindered by a lack of recent forest inventories, which are necessary for calibrating earth observation data and for evaluating the relationship between carbon stocks and tree diversity in the context of forest conservation (for example, REDD+). Here, we present new inventory data from south-eastern Tanzania, comprising more than 15,000 trees at 25 locations located across a gradient of aboveground woody carbon (AGC) stocks.
View Article and Find Full Text PDFLarge parts of sub-Saharan Africa are experiencing rapid changes in land use and land cover, driven largely by the expansion of small-scale shifting cultivation. This practice creates complex mosaic landscapes with active agricultural fields and patches of mature woodland, interspersed with remnant patches in various stages of regrowth. Our objective here was to examine the rate and extent to which carbon stocks in trees and soils recover after cultivation, and detail how this disturbance and regrowth affect patterns in tree species composition and diversity over 40 years of succession in a miombo woodland landscape in southeast Tanzania.
View Article and Find Full Text PDF