Publications by authors named "Iain J Mulford"

Anti-tumor efficacy of targeted therapies is variable across patients and cancer types. Even in patients with initial deep response, tumors are typically not eradicated and eventually relapse. To address these challenges, we present a systematic screen for targets that limit the anti-tumor efficacy of EGFR and ALK inhibitors in non-small cell lung cancer and BRAF/MEK inhibitors in colorectal cancer.

View Article and Find Full Text PDF

p53 is a transcription factor that plays a central role in guarding the genomic stability of cells through cell-cycle arrest or induction of apoptosis. However, the effects of p53 in antitumor immunity are poorly understood. To investigate the role of p53 in controlling tumor-immune cell cross-talk, we studied murine syngeneic models treated with HDM201, a potent and selective second-generation MDM2 inhibitor.

View Article and Find Full Text PDF

Evolved resistance to tyrosine kinase inhibitor (TKI)-targeted therapies remains a major clinical challenge. In epidermal growth factor receptor (EGFR) mutant non-small-cell lung cancer (NSCLC), failure of EGFR TKIs can result from both genetic and epigenetic mechanisms of acquired drug resistance. Widespread reports of histologic and gene expression changes consistent with an epithelial-to-mesenchymal transition (EMT) have been associated with initially surviving drug-tolerant persister cells, which can seed bona fide genetic mechanisms of resistance to EGFR TKIs.

View Article and Find Full Text PDF

The progression of cancer from non-metastatic to metastatic is the critical transition in the course of the disease. The epithelial to mesenchymal transition (EMT) is a mechanism by which tumor cells acquire characteristics that improve metastatic efficiency. Targeting EMT processes in patients is therefore a potential strategy to block the transition to metastatic cancer and improve patient outcome.

View Article and Find Full Text PDF

Epithelial to mesenchymal transition (EMT) plays a dual role in tumor progression. It enhances metastasis of tumor cells by increasing invasive capacity and promoting survival, and it decreases tumor cell sensitivity to epithelial cell-targeting agents such as epithelial growth factor receptor kinase inhibitors. In order to study EMT in tumor cells, we have characterized 3 new models of ligand-driven EMT: the CFPAC1 pancreatic tumor model and the H358 and H1650 lung tumor models.

View Article and Find Full Text PDF