Publications by authors named "Iago Hale"

Although Synsepalum dulcificum is viewed as one of the most economically promising orphan tree crops worldwide, its genetic improvement and sustainable conservation are hindered by a lack of understanding of its evolutionary history and current population structure. Here, we report for the first time the application of genome-wide single nucleotide polymorphism genotyping to a diverse panel of S. dulcificum accessions to depict the genetic diversity and population structure of the species in the Dahomey Gap (DG) and Upper Guinea (UG) regions to infer its evolutionary history.

View Article and Find Full Text PDF

The linkage in new and creative ways of existing plant breeding methods responsive to different global trends and values provides a 'systems approach' to address a broad set of global production challenges more effectively. Here, we illustrate such an approach through its application to trees, chosen because of their extensive diversity in features, uses, users, production contexts, and domestication pathways. We coin the resulting strategy 'tree diversity breeding' and consider it with reference to trends and values related to participation, environment, biotechnology, and markets as examples.

View Article and Find Full Text PDF

A defining component of agroforestry parklands across Sahelo-Sudanian Africa (SSA), the shea tree () is central to sustaining local livelihoods and the farming environments of rural communities. Despite its economic and cultural value, however, not to mention the ecological roles it plays as a dominant parkland species, shea remains semi-domesticated with virtually no history of systematic genetic improvement. In truth, shea's extended juvenile period makes traditional breeding approaches untenable; but the opportunity for genome-assisted breeding is immense, provided the foundational resources are available.

View Article and Find Full Text PDF

and are two tetraploid wheat species sharing as a common ancestor, and domesticated accessions from both of these allopolyploids exhibit nonbrittle rachis (i.e., nonshattering spikes).

View Article and Find Full Text PDF

The geographical origin of watermelon () remains debated. While a first hypothesis suggests the center of origin to be West Africa, where the endemic sister species thrives, a second hypothesis suggests northeastern Africa where the white-fleshed Sudanese Kordophan melon is cultivated. In this study, we infer biogeographical and haplotype genealogy for , and using noncoding cpDNA sequences (T-L and F32 regions) from a global collection of 135 accessions.

View Article and Find Full Text PDF

Background: Non-host resistance (NHR) presents a compelling long-term plant protection strategy for global food security, yet the genetic basis of NHR remains poorly understood. For many diseases, including stem rust of wheat [causal organism Puccinia graminis (Pg)], NHR is largely unexplored due to the inherent challenge of developing a genetically tractable system within which the resistance segregates. The present study turns to the pathogen's alternate host, barberry (Berberis spp.

View Article and Find Full Text PDF

Wheat domestication was a milestone in the rise of agrarian societies in the Fertile Crescent. As opposed to the freely dispersing seeds of its tetraploid progenitor wild emmer, the hallmark trait of domesticated wheat is intact, harvestable spikes. During domestication, wheat acquired recessive loss-of-function mutations in the Brittle Rachis 1 genes, both in the A genome (BTR1-A) and B genome (BTR1-B).

View Article and Find Full Text PDF

Especially in low-income nations, new and orphan crops provide important opportunities to improve diet quality and the sustainability of food production, being rich in nutrients, capable of fitting into multiple niches in production systems, and relatively adapted to low-input conditions. The evolving space for these crops in production systems presents particular genetic improvement requirements that extensive gene pools are able to accommodate. Particular needs for genetic development identified in part with plant breeders relate to three areas of fundamental importance for addressing food production and human demographic trends and associated challenges, namely: facilitating integration into production systems; improving the processability of crop products; and reducing farm labour requirements.

View Article and Find Full Text PDF

The domestication of wild emmer wheat led to the selection of modern durum wheat, grown mainly for pasta production. We describe the 10.45 gigabase (Gb) assembly of the genome of durum wheat cultivar Svevo.

View Article and Find Full Text PDF

Background: The accurate determination of parent-progeny relationships within both in situ natural populations and ex situ genetic resource collections can greatly enhance plant breeding/domestication efforts and support plant genetic resource conservation strategies. Although a range of parentage analysis tools are available, none are designed to infer such relationships using genome-wide single nucleotide polymorphism (SNP) data in the complete absence of guiding information, such as generational groups, partial pedigrees, or genders. The R package ('apparent') developed and presented here addresses this gap.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on improving grain weight (GW) in wheat through genetic analysis, identifying quantitative trait loci (QTLs) linked to GW in a specific population of recombinant inbred lines (RILs) derived from a cross between wild and durum wheat.
  • - A significant QTL on chromosome 6A was found to enhance GW, validated through a line carrying this QTL, which showed over 8% increase in GW compared to the durum variety it was derived from.
  • - The research identified a wheat gene, TtGRF4-A, as a potential candidate for GW improvement, highlighting its rare alleles in wild wheat accessions that may contribute to higher wheat yields in future breeding efforts.
View Article and Find Full Text PDF

Summary: GBS-SNP-CROP is a bioinformatics pipeline originally developed to support the cost-effective genome-wide characterization of plant genetic resources through paired-end genotyping-by-sequencing (GBS), particularly in the absence of a reference genome. Since its 2016 release, the pipeline's functionality has greatly expanded, its computational efficiency has improved, and its applicability to a broad set of genomic studies for both plants and animals has been demonstrated. This note details the suite of improvements to date, as realized in GBS-SNP-CROP v.

View Article and Find Full Text PDF

This study identified Rht25, a new plant height locus on wheat chromosome arm 6AS, and characterized its pleiotropic effects on important agronomic traits. Understanding genes regulating wheat plant height is important to optimize harvest index and maximize grain yield. In modern wheat varieties grown under high-input conditions, the gibberellin-insensitive semi-dwarfing alleles Rht-B1b and Rht-D1b have been used extensively to confer lodging tolerance and improve harvest index.

View Article and Find Full Text PDF

Stem rust, caused by Puccinia graminis (Pg), remains a devastating disease of wheat, and the emergence of new Pg races virulent on deployed resistance genes fuels the ongoing search for sources of durable resistance. Despite its intrinsic durability, non-host resistance (NHR) is largely unexplored as a protection strategy against Pg, partly due to the inherent challenge of developing a genetically tractable system within which NHR segregates. Here, we demonstrate that Pg's far less studied ancestral host, barberry (Berberis spp.

View Article and Find Full Text PDF

Despite an increasing awareness of the potential of "orphan" or unimproved crops to contribute to food security and enhanced livelihoods for farmers, coordinated research agendas to facilitate production and use of orphan crops by local communities are generally lacking. We provide an overview of the current knowledge on leafy vegetables with a focus on , a highly nutritious species used in Africa and Asia, and highlight general and species-specific guidelines for participatory, genomics-assisted breeding of orphan crops. Key steps in genome-enabled orphan leafy vegetables improvement are identified and discussed in the context of breeding, including: (1) germplasm collection and management; (2) product target definition and refinement; (3) characterization of the genetic control of key traits; (4) design of the 'process' for cultivar development; (5) integration of genomic data to optimize that 'process'; (6) multi-environmental participatory testing and end-user evaluation; and (7) crop value chain development.

View Article and Find Full Text PDF

Growing resistant wheat varieties is a key method of minimizing the extent of yield losses caused by the globally important wheat leaf rust (LR) and stripe rust (YR) diseases. In this study, a population of 186 F recombinant inbred lines (RILs) derived from a cross between a synthetic wheat derivative (PI610750) and an adapted common wheat line (cv. "UC1110") were phenotyped for LR and YR response at both seedling and adult plant stages over multiple seasons.

View Article and Find Full Text PDF

Wheat ( spp.) is one of the founder crops that likely drove the Neolithic transition to sedentary agrarian societies in the Fertile Crescent more than 10,000 years ago. Identifying genetic modifications underlying wheat's domestication requires knowledge about the genome of its allo-tetraploid progenitor, wild emmer ( ssp.

View Article and Find Full Text PDF

The miracle plant, (Schumach. & Thonn.) Daniell is a native African orphan crop species that has recently received increased attention due to its promise as a sweetener and source of antioxidants in both the food and pharmaceutical industries.

View Article and Find Full Text PDF

Plant germplasm collections can be invaluable resources to plant breeders, provided they are well-characterized. After 140 years of acquisition and curation efforts by a wide and largely non-coordinated array of private and institutional actors, the current US collection of cold-hardy kiwifruit (Actinidia spp.) is rife with misclassifications, misnomers, and mix-ups.

View Article and Find Full Text PDF

A major locus on the long arm of wheat chromosome 4B controls within-spikelet variation in both grain size and seed dormancy, the latter an important survival mechanism likely eliminated from wild wheat during domestication. Seed dormancy can increase the probability of survival of at least some progeny under unstable environmental conditions. In wild emmer wheat, only one of the two grains in a spikelet germinates during the first rainy season following maturation; and this within-plant variation in seed dormancy is associated with both grain dimension differences and position within the spikelet.

View Article and Find Full Text PDF

Background: With its simple library preparation and robust approach to genome reduction, genotyping-by-sequencing (GBS) is a flexible and cost-effective strategy for SNP discovery and genotyping, provided an appropriate reference genome is available. For resource-limited curation, research, and breeding programs of underutilized plant genetic resources, however, even low-depth references may not be within reach, despite declining sequencing costs. Such programs would find value in an open-source bioinformatics pipeline that can maximize GBS data usage and perform high-density SNP genotyping in the absence of a reference.

View Article and Find Full Text PDF

Septoria tritici blotch (STB), caused by (synonym: ; asexual stage: ), is an important disease of wheat worldwide. Management of the disease usually is by host resistance or fungicides. However, has developed insensitivity to most commonly applied fungicides so there is a continuing need for well-characterized sources of host resistance to accelerate the development of improved wheat cultivars.

View Article and Find Full Text PDF

This study identifies a small distal region of the 1RS chromosome from rye that has a positive impact on wheat yield. The translocation of the short arm of rye (Secale cereale L.) chromosome one (1RS) onto wheat (Triticum aestivum L.

View Article and Find Full Text PDF