One of the most robust signals of climate change is the relentless rise in global mean surface temperature, which is linked closely with the water-holding capacity of the atmosphere. A more humid atmosphere will lead to enhanced moisture transport due to, among other factors, an intensification of atmospheric rivers (ARs) activity, which are an important mechanism of moisture advection from subtropical to extra-tropical regions. Here we show an enhanced evapotranspiration rates in association with landfalling atmospheric river events.
View Article and Find Full Text PDFA Lagrangian analysis is applied to identify the main moisture source areas associated with atmospheric rivers (ARs) making landfall along the west coast of South Africa during the extended austral winter months from 1980 to 2014. The results show that areas that provide the anomalous uptake of moisture can be categorized into four regions: (1) the South Atlantic Ocean between 10°S and 30°S, (2) a clear local maximum in the eastern South Atlantic, (3) a continental source of anomalous uptake to the north of the Western Cape, and (4) over South America at a distance of more than 7000 km from the target region. It emerges that the South American moisture source can be linked to a particular phase of the South American low-level jet, known as a no Chaco jet event (NCJE), which transports moisture to the western and central South Atlantic basin.
View Article and Find Full Text PDF