Publications by authors named "Iacopo Carusotto"

We study the quantum dynamics in response to time-dependent external potentials of the edge modes of a small fractional quantum Hall fluid composed of few particles on a lattice in a bosonic Laughlin-like state at filling ν=1/2. We show that the nonlinear chiral Luttinger liquid theory provides a quantitatively accurate description even for the small lattices that are available in state-of-the-art experiments, away from the continuum limit. Experimentally accessible data related to the quantized value of the bulk transverse Hall conductivity are identified both in the linear and the non-linear response to an external excitation.

View Article and Find Full Text PDF

We investigate the finite-size origin of the coherence time (or equivalently of its inverse, the emission linewidth) of a spatially extended, one-dimensional nonequilibrium condensate. We show that the well-known Schawlow-Townes scaling of laser theory, possibly including the Henry broadening factor, only holds for small system sizes, while in larger systems the linewidth displays a novel scaling determined by Kardar-Parisi-Zhang physics. This is shown to lead to an opposite dependence of the coherence time on the optical nonlinearity in the two cases.

View Article and Find Full Text PDF

We develop a Gutzwiller theory for the nonequilibrium steady states of a strongly interacting photon fluid driven by a non-Markovian incoherent pump. In particular, we explore the collective modes of the system across the out-of-equilibrium insulator-superfluid transition of the system, characterizing the diffusive Goldstone mode in the superfluid phase and the excitation of particles and holes in the insulating one. Observable features in the pump-and-probe optical response of the system are highlighted.

View Article and Find Full Text PDF

We extend the mapping of time-dependent paraxial optics by engineering a synthetic magnetic vector potential, leading to a nontrivial band topology. We consider an inhomogeneous 1D array of coupled optical waveguides and show that the wave equation describing paraxial propagation of optical pulses can be recast as a Schrödinger equation, including a synthetic magnetic field whose strength can be controlled via the spatial gradient of the waveguide properties across the array. We use an experimentally motivated model of a laser-written array to demonstrate that this synthetic magnetic field can be engineered in realistic setups and can produce interesting physics such as cyclotron motion, a controllable Hall drift of the pulse in space or time, and propagation in chiral edge states.

View Article and Find Full Text PDF

We theoretically propose an atomic Bose-Einstein condensate as an analog model of backreaction effects during the preheating stage of the early Universe. In particular, we address the out-of-equilibrium dynamics where the initially excited inflaton field decays by parametrically exciting the matter fields. We consider a two-dimensional, ring-shaped BEC under a tight transverse confinement whose transverse breathing mode and the Goldstone and dipole excitation branches simulate the inflaton and quantum matter fields, respectively.

View Article and Find Full Text PDF

Revealing universal behaviours is a hallmark of statistical physics. Phenomena such as the stochastic growth of crystalline surfaces and of interfaces in bacterial colonies, and spin transport in quantum magnets all belong to the same universality class, despite the great plurality of physical mechanisms they involve at the microscopic level. More specifically, in all these systems, space-time correlations show power-law scalings characterized by universal critical exponents.

View Article and Find Full Text PDF

Hydrodynamic phenomena can be observed with light thanks to the analogy between quantum gases and nonlinear optics. In this Letter, we report an experimental study of the superfluid-like properties of light in a (1+1)-dimensional nonlinear optical mesh lattice, where the arrival time of optical pulses plays the role of a synthetic spatial dimension. A spatially narrow defect at rest is used to excite sound waves in the fluid of light and measure the sound speed.

View Article and Find Full Text PDF

We study the linear and nonlinear response of a unidirectional reflector where a nonlinear breaking of the Lorentz reciprocity is observed. The device under test consists of a racetrack microresonator, with an embedded S-shaped waveguide, coupled to an external bus waveguide (BW). This geometry of the microresonator is known as "taiji" microresonator (TJMR).

View Article and Find Full Text PDF

We study light-matter interactions in two-dimensional photonic systems in the presence of a spatially homogeneous synthetic magnetic field for light. Specifically, we consider one or more two-level emitters located in the bulk region of the lattice, where for increasing magnetic field the photonic modes change from extended plane waves to circulating Landau levels. This change has a drastic effect on the resulting emitter-field dynamics, which becomes intrinsically non-Markovian and chiral, leading to the formation of strongly coupled Landau-photon polaritons.

View Article and Find Full Text PDF

We report the realization of a Hanbury Brown and Twiss (HBT)-like experiment with a gas of interacting bosons at low temperatures. The low-temperature regime is reached in a three-dimensional optical lattice and atom-atom correlations are extracted from the detection of individual metastable helium atoms after a long free fall. We observe, in the noncondensed fraction of the gas, a HBT bunching whose properties strongly deviate from the HBT signals expected for noninteracting bosons.

View Article and Find Full Text PDF

We report the realization of a synthetic magnetic field for photons and polaritons in a honeycomb lattice of coupled semiconductor micropillars. A strong synthetic field is induced in both the and orbital bands by engineering a uniaxial hopping gradient in the lattice, giving rise to the formation of Landau levels at the Dirac points. We provide direct evidence of the sublattice symmetry breaking of the lowest-order Landau level wavefunction, a distinctive feature of synthetic magnetic fields.

View Article and Find Full Text PDF

Exciton-polaritons in semiconductor microcavities constitute the archetypal realization of a quantum fluid of light. Under coherent optical drive, remarkable effects such as superfluidity, dark solitons or the nucleation of vortices have been observed, and can be all understood as specific manifestations of the condensate collective excitations. In this work, we perform a Brillouin scattering experiment to measure their dispersion relation [Formula: see text] directly.

View Article and Find Full Text PDF

We theoretically propose an experimentally viable scheme to use an impurity atom in an atomic Bose-Einstein condensate, in order to realize condensed-matter analogs of quantum vacuum effects. In a suitable atomic level configuration, the collisional interaction between the impurity atom and the density fluctuations in the condensate can be tailored to closely reproduce the electric-dipole coupling of quantum electrodynamics. By virtue of this analogy, we recover and extend the paradigm of electromagnetic vacuum forces to the domain of cold atoms, showing in particular the emergence, at supersonic atomic speeds, of a novel power-law scaling of the Casimir force felt by the atomic impurity, as well as the occurrence of a quantum frictional force, accompanied by the Ginzburg emission of Bogoliubov quanta.

View Article and Find Full Text PDF

We discuss how one can realize a photonic device that combines synthetic dimensions and synthetic magnetic fields with spatially local interactions. Using an array of ring cavities, the angular coordinate around each cavity spans the synthetic dimension. The synthetic magnetic field arises as the intercavity photon hopping is associated with a change of angular momentum.

View Article and Find Full Text PDF

The Berry curvature is a geometrical property of an energy band which acts as a momentum space magnetic field in the effective Hamiltonian describing single-particle quantum dynamics. We show how this perspective may be exploited to study systems directly relevant to ultracold gases and photonics. Given the exchanged roles of momentum and position, we demonstrate that the global topology of momentum space is crucially important.

View Article and Find Full Text PDF
Superfluid light in bulk nonlinear media.

Proc Math Phys Eng Sci

September 2014

We review how the paraxial approximation naturally leads to a hydrodynamic description of light propagation in a bulk Kerr nonlinear medium in terms of a wave equation analogous to the Gross-Pitaevskii equation for the order parameter of a superfluid. The main features of the many-body collective dynamics of the fluid of light in this propagating geometry are discussed: generation and observation of Bogoliubov sound waves in the fluid of light is first described. Experimentally accessible manifestations of superfluidity are then highlighted.

View Article and Find Full Text PDF

We theoretically discuss analogues of the anomalous and the integer quantum Hall effect in driven-dissipative two-dimensional photonic lattices in the presence of a synthetic gauge field. Photons are coherently injected by a spatially localized pump, and the transverse shift of the in-plane light distribution under the effect of an additional uniform force is considered. Depending on pumping parameters, the transverse shift turns out to be proportional either to the global Chern number (integer quantum Hall effect) or to the local Berry curvature (anomalous Hall effect).

View Article and Find Full Text PDF

We theoretically study the superfluidity properties of a nonequilibrium Bose-Einstein condensate of exciton polaritons in a semiconductor microcavity under incoherent pumping. The dynamics of the condensate is described at mean-field level in terms of a generalized Gross-Pitaevskii equation. The drag force on a small moving object and the onset of fringes in the density profile are shown to have a sharp threshold as a function of the velocity; a generalized Landau criterion is developed to explain this behavior in terms of the dispersion of elementary excitations.

View Article and Find Full Text PDF

We develop a mean-field theory of the dynamics of a nonequilibrium Bose-Einstein condensate of exciton polaritons in a semiconductor microcavity. The spectrum of elementary excitations around the stationary state is analytically studied by means of a generalized Gross-Pitaevskii equation. A diffusive behavior of the Goldstone mode is found in the spatially homogeneous case and new features are predicted for the Josephson effect in a two-well geometry.

View Article and Find Full Text PDF

We propose a Raman spectroscopy technique which is able to probe the one-particle Green function, the Fermi surface, and the quasiparticles of a gas of strongly interacting ultracold atoms. We give quantitative examples of experimentally accessible spectra. The efficiency of the method is validated by means of simulated images for the case of a usual Fermi liquid as well as for more exotic states: specific signatures of, e.

View Article and Find Full Text PDF

We develop a general theory of the quantum vacuum radiation generated by an arbitrary time modulation of the vacuum Rabi frequency of an intersubband transition in a doped quantum well system embedded in a planar microcavity. Both nonradiative and radiative losses are included within an input-output quantum Langevin framework. The intensity and the spectral signatures of the extra-cavity emission are characterized versus the modulation properties.

View Article and Find Full Text PDF

We propose a time-dependent, spatially periodic photonic structure which is able to shift the carrier frequency of an optical pulse which propagates through it. Taking advantage of the slow group velocity of light in periodic photonic structures, the wavelength conversion process can be performed with an efficiency close to 1 and without affecting the shape and the coherence of the pulse. Quantitative Finite Difference Time Domain simulations are performed for realistic systems with optical parameters of conventional silicon technology.

View Article and Find Full Text PDF

We propose two interferometric schemes to experimentally detect in real space the onset of pair condensation in a two-spin-component Fermi gas. Two atomic wave packets are coherently extracted from the gas at different positions and are mixed by a matter-wave beam splitter: we show that the spatial long-range order of the atomic pairs in the gas reflects in the atom counting statistics in the beam splitter output channels. The same long-range order is also shown to create a matter-wave grating in the overlapping region of the two extracted wave packets, grating that can be revealed by a light-scattering experiment.

View Article and Find Full Text PDF

We study the motion of a polariton fluid injected into a planar microcavity by a continuous wave laser. In the presence of static defects, the spectrum of the Bogoliubov-like excitations reflects onto the shape and intensity of the resonant Rayleigh scattering emission pattern in both momentum and real space. We find a superfluid regime in which the Rayleigh scattering ring in momentum space collapses as well as its normalized intensity.

View Article and Find Full Text PDF

We show how spin-orbit coupling and Berry phase can appear in two-dimensional optical lattices by coupling atoms' internal degrees of freedom to radiation. The Rashba Hamiltonian, a standard description of spin-orbit coupling for two-dimensional electrons, is obtained for the atoms under certain circumstances. We discuss the possibility of observing associated phenomena, such as the anomalous Hall and spin Hall effects, with cold atoms in optical lattices.

View Article and Find Full Text PDF