Two advanced oxidation processes (AOPs), namely ozone/HO and UV/HO, were tested at pilot scale as zero-liquid-discharge alternative treatments for the removal of microbiological (bacteria and viruses), chemical (compounds of emerging concern (CECs)) and genotoxic responses from tertiary municipal wastewater for indirect potable reuse (IPR). The AOP treated effluents were further subjected to granular activated carbon (GAC) adsorption and UV disinfection, following the concept of multiple treatment barriers. As a reference, a consolidated advanced wastewater treatment train consisting of ultrafiltration, UV disinfection, and reverse osmosis (RO) was also employed.
View Article and Find Full Text PDFSludge production in the wastewater treatment sector is consistently increasing and represents a critical environmental and economic issue. This study evaluated an unconventional approach for treating wastewater generated from the cleaning of non-hazardous plastic solid waste during the plastic recycling process. The proposed scheme was based on sequencing batch biofilter granular reactor (SBBGR) technology, which was compared with the activated sludge-based treatment currently in operation.
View Article and Find Full Text PDFThe fluctuation in the number of people in tourist areas affects the wastewater quality and quantity. Constructed wetlands (CWs) aim to simulate physical, chemical, and biological processes occurring in natural environments for wastewater treatment and are considered a sustainable system. The current study aimed at evaluating the effectiveness of in-vessel CWs for supporting the wastewaters treatment plants in periods of overloading.
View Article and Find Full Text PDFThe aim of this work is to assess how the presence of cellulose-based bio-plastics influence the biological stabilization of mixed Municipal Solid Waste (MSW). For the scope, two cellulose acetate bio-plastics have been mixed with a synthetic mixed waste to create samples with and without bio-plastics. A self-induced biostabilization has been carried out for 7 and 14 days where temperature and off-gas have been monitored continuously.
View Article and Find Full Text PDFWastewater treatment plants (WWTPs) are known sources of contaminants of emerging concern (CECs) spreading into the environment, as well as, of unpleasant odors. CECs represent a potential hazard for human health and the environment being pharmaceutical or biologically active compounds and they are acquiring relevance in European directives. Similarly, the public concern about odour emissions from WWTPs is also increasing due to the decreasing distance between WWTP and residential areas.
View Article and Find Full Text PDFThe effectiveness of an advanced treatment of wastewater generated by non-hazardous plastic solid waste (PSW) washing, based on the Sequencing Batch Biofilter Granular Reactor (SBBGR), was assessed in terms of gross parameters, removal efficiencies and sludge production. The proposed treatment was also compared with the conventional treatment, which was based on primary and secondary treatments, using the activated sludge process, performed by Recuperi Pugliesi, a leading company in the plastic recycling industry located in Bari, Italy. The company produces low-density polyethylene (LDPE) regenerated granules from PSW used in agricultural and floricultural greenhouse activities and industrial packaging after a washing stage in the aqueous phase.
View Article and Find Full Text PDFThis study investigated the environmental contamination of groundwater as a consequence of the discharge of treated wastewater into the soil. The investigation focused on a wastewater treatment plant located in an area fractured by karst in the Salento peninsula (Apulia, Italy). Water samples were collected at four sites (raw wastewater, treated wastewater, infiltration trench, and monitoring well), monthly from May to December 2019 (with the exception of August), and were tested for (1) panel of bacteria; (2) enteric viruses; and (3) chemical substances.
View Article and Find Full Text PDFNowadays, sludge management represents one of the most critical challenges in the field of sewage treatment for economic and environmental impacts. Therefore, the reduction of sludge has become a major issue for the operators of municipal wastewater treatment plants. In the present paper, a new system, whose acronym is MULESL (MUch LEss SLudge), is proposed and tested at full scale for reducing the quantity of sludge in the water line of the sewage treatment plant.
View Article and Find Full Text PDFIn the present study, the possibility of recovering both thermal energy and water for agricultural purposes from sewage is evaluated. A treatment plant, based on a sequencing batch biofilter granular reactor (SBBGR) followed by sand filtration and coupled with a solar wastewater source heat pump, was operated from September to November 2018 at a set-point temperature of 14 °C to verify the stability of heat recovery efficiency and the suitability of plant effluent to be reused for irrigation. Heat recovery did not influence the SBBGR treatment and disinfection efficiency, which removed about 90% of suspended solids, chemical and biochemical oxygen demand and ammonia, as well as 70% of total nitrogen, 3 log units of Escherichia coli and more than 1 log unit of Clostridium perfringens.
View Article and Find Full Text PDFThree different chemical oxidation processes were investigated in terms of their capability to degrade organic chemical components of real mature landfill-leachate in combination with biological treatment run in a Sequencing Batch Biofilter Granular Reactor (SBBGR). HO, HO + UV and O were integrated with SBBGR and respective effluents were analyzed and compared with the effluent obtained from biological SBBGR treatment alone. In agreement with their respective oxidative power, conventional bulk parameters (residual COD, TOC, N, TSS) determined from the resulting effluents evidenced the following efficacy ranking for degradation: SBBGR/O > SBBGR/UV + HO > SBBGR/HO > SBBGR.
View Article and Find Full Text PDFThis study proposes the evaluation of the suitability of mesophilic anaerobic digestion as a simple technology for the treatment of the citrus waste produced by small-medium agro-industrial enterprises involved in the transformation of Citrus fruits. Two different stocks of citrus peel waste were used (i.e.
View Article and Find Full Text PDFThe availability of high quality water has become a constraint in several countries. Agriculture represents the main water user, therefore, wastewater reuse in this area could increase water availability for other needs. This research was aimed to provide a simplified scheme for treatment and reuse of municipal and domestic wastewater based on Sequencing Batch Biofilter Granular Reactors (SBBGRs).
View Article and Find Full Text PDFIn order to mitigate the potential effects on the human health which are associated to the use of treated wastewater in agriculture, antibiotic resistance genes (ARGs) are required to be carefully monitored in wastewater reuse processes and their spread should be prevented by the development of efficient treatment technologies. Objective of this study was the assessment of ARGs reduction efficiencies of a novel technological treatment solution for agricultural reuse of municipal wastewaters. The proposed solution comprises an advanced biological treatment (Sequencing Batch Biofilter Granular Reactor, SBBGR), analysed both al laboratory and pilot scale, followed by sand filtration and two different disinfection final stages: ultraviolet light (UV) radiation and peracetic acid (PAA) treatments.
View Article and Find Full Text PDFIn the present paper, the effectiveness of a Sequencing Batch Biofilter Granular Reactor (SBBGR) and its integration with different disinfection strategies (UV irradiation, peracetic acid) for producing an effluent suitable for agricultural use was evaluated. The plant treated raw domestic sewage, and its performances were evaluated in terms of the removal efficiency of a wide group of physical, chemical and microbiological parameters. The SBBGR resulted really efficient in removing suspended solids, COD and nitrogen with an average effluent concentration of 5, 32 and 10 mg/L, respectively.
View Article and Find Full Text PDFThe Artificial Neural Networks by Multi-objective Genetic Algorithms (ANN-MOGA) model has been applied to gross parameters data of a Sequencing Batch Biofilter Granular Reactor (SBBGR) with the aim of providing an effective tool for predicting the fluctuations coming from touristic pressure. Six independent multivariate models, which were able to predict the dynamics of raw chemical oxygen demand (COD), soluble chemical oxygen demand (CODsol), total suspended solid (TSS), total nitrogen (TN), ammoniacal nitrogen (N-NH4 (+)) and total phosphorus (Ptot), were developed. The ANN-MOGA software application has shown to be suitable for addressing the SBBGR reactor modelling.
View Article and Find Full Text PDFThe electrochemical degradation of six of the most widely used iodinated contrast media was investigated. Batch experiments were performed under constant current conditions using two DSA® electrodes (titanium coated with a proprietary and patented mixed metal oxide solution of precious metals such as iridium, ruthenium, platinum, rhodium and tantalum). The degradation removal never fell below 85% (at a current density of 64 mA/cm(2) with a reaction time of 150 min) when perchlorate was used as the supporting electrolyte; however, when sulphate was used, the degradation performance was above 80% (at a current density of 64 mA/cm(2) with a reaction time of 150 min) for all of the compounds studied.
View Article and Find Full Text PDFJ Environ Manage
November 2014
This pilot scale study aims to test the effectiveness of an innovative compact biological system (SBBGR - Sequencing Batch Biofilter Granular Reactor) for treating municipal wastewater in tourist areas characterised by intense seasonal water demand and wastewater discharge. The results obtained after a long term operation of 463 days have shown that the proposed system is able to assure average removal efficiencies higher than 90% for COD (chemical oxygen demand), total suspended solids and TKN (total Kjeldahl nitrogen) independently of the influent concentration values and organic loading, which ranged from 0.2 to 5.
View Article and Find Full Text PDFThere is a need for a reliable sustainable option to effectively manage the landfill leachate generation. This study presents a simple procedure for the revegetation of the walls of closed landfills, employing the leachate as a fertirrigant. The native plants Lepidium sativum, Lactuca sativa, and Atriplex halimus, which suit the local climate, were chosen for this study in Southern Italy.
View Article and Find Full Text PDFTextile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed municipal-textile wastewater. Thanks to high average removals in SBBGR (82.
View Article and Find Full Text PDFThe Sequencing Batch Biofilter Granular Reactor (SBBGR) is a promising wastewater treatment technology characterized by high biomass concentration in the system, good depuration performance and low sludge production. Its main drawback is the high energy consumption required for wastewater recirculation through the reactor bed to ensure both shear stress and oxygen supply. Therefore, the effect of low recirculation flow on the long-term (38 months) performance of a laboratory scale SBBGR was studied.
View Article and Find Full Text PDFWater Sci Technol
November 2012
The textile industry releases highly polluted and complex wastewaters, which are difficult to treat and require numerous treatment steps. Innovative technologies for on-site treatment at each factory would permit cost reduction. For this reason, we ran a laboratory-scale study to assess the suitability of a sequencing batch biofilter granular reactor (SBBGR) for textile wastewater treatment, testing four different types of wastewater.
View Article and Find Full Text PDFSequencing batch biofilter granular reactor (SBBGR) is a recently developed biological wastewater treatment technology characterised by a very low sludge production, among other numerous advantages. Even if costs for sludge treatment and disposal are mainly dependent on the amount of sludge produced, sludge properties, especially those linked to solid-liquid separation, play a key role as well. In fact, such properties deeply influence the type of treatments sludge has to undergo before disposal and the final achievable solids concentration, strongly affecting treatment and disposal costs.
View Article and Find Full Text PDFWastewaters generated by many economically relevant industrial activities contain recalcitrant organic compounds which pass unaltered through biological stage of the treatment plant making it difficult to meet the discharge limits currently in force. Therefore, an additional treatment is usually required to remove these compounds. In this study, the application of ozonation together with biological treatment was investigated.
View Article and Find Full Text PDFTextile wastewater is difficult to treat as it usually contains considerable amounts of different pollutants, which are often recalcitrant, toxic and inhibitory. Therefore, complex treatment schemes based on the sequence of various steps are usually required for an effective treatment. This explains why textile effluents are often treated in centralized plants and sometimes mixed with municipal wastewater.
View Article and Find Full Text PDFAn innovative process based on ozone-enhanced biological degradation, carried out in an aerobic granular biomass system (SBBGR--Sequencing Batch Biofilter Granular Reactor), was tested at pilot scale for tannery wastewater treatment chosen as representative of industrial recalcitrant wastewater. The results have shown that the process was able to meet the current discharge limits when the biologically treated wastewater was recirculated through an adjacent reactor where a specific ozone dose of 120 mg O3/L(influent) was used. The benefits produced by using ozone were appreciable even visually since the final effluent of the process looked like tap water.
View Article and Find Full Text PDF