Publications by authors named "Iaci N Soares"

Background: The M2 isoform of the glycolytic enzyme pyruvate kinase (PKM2) is one of the key components in the Warburg effect, and an important regulator of cancer cell metabolism. Elevated PKM2 expression is a hallmark of numerous tumor types, making it a promising target for cancer therapy.

Methods: Migration of H1299 lung tumor cells treated with synthetic oleanane triterpenoid derivatives CDDO-Me and CDDO-Im was monitored using scratch and transwell assays.

View Article and Find Full Text PDF

The functionality of the tumor suppressor p53 is altered in more than 50% of human cancers, and many individuals with cancer exhibit amyloid-like buildups of aggregated p53. An understanding of what triggers the pathogenic amyloid conversion of p53 is required for the further development of cancer therapies. Here, perturbation of the p53 core domain (p53C) with subdenaturing concentrations of guanidine hydrochloride and high hydrostatic pressure revealed native-like molten globule (MG) states, a subset of which were highly prone to amyloidogenic aggregation.

View Article and Find Full Text PDF

Prion-like behavior of several amyloidogenic proteins has been demonstrated in recent years. Despite having functional roles in some cases, irregular aggregation can have devastating consequences. The most commonly known amyloid diseases are Alzheimer's, Parkinson's, and Transmissible Spongiform Encephalopathies (TSEs).

View Article and Find Full Text PDF

The p53 family of proteins is comprised of p53, p63 and p73. Because the p53 DNA binding domain (DBD) is naturally unstable and possesses an amyloidogenic sequence, it is prone to form amyloid fibrils, causing loss of functions. To develop p53 therapies, it is necessary to understand the molecular basis of p53 instability and aggregation.

View Article and Find Full Text PDF

Prion diseases are disorders that share several characteristics that are typical of many neurodegenerative diseases. Recently, several studies have extended the prion concept to pathological aggregation in malignant tumors involving misfolded p53, a tumor-suppressor protein. The aggregation of p53 and its coaggregation with p53 family members, p63 and p73, have been shown.

View Article and Find Full Text PDF

p53, p63, p73 family of proteins are transcription factors with crucial roles in regulating cellular processes such apoptosis, proliferation, differentiation, and DNA damage response. The three family members have both overlapping and unique biological functions. Sequence and structural homology are greatest in the DNA binding domains (DBD), which is the site of the majority of p53 mutations.

View Article and Find Full Text PDF

Stress-inducible phosphoprotein 1 (STI1), a cochaperone for Hsp90, has been shown to regulate multiple pathways in astrocytes, but its contributions to cellular stress responses are not fully understood. We show that in response to irradiation-mediated DNA damage stress STI1 accumulates in the nucleus of astrocytes. Also, STI1 haploinsufficiency decreases astrocyte survival after irradiation.

View Article and Find Full Text PDF

Stress-inducible phosphoprotein 1 (STI1) is part of the chaperone machinery, but it also functions as an extracellular ligand for the prion protein. However, the physiological relevance of these STI1 activities in vivo is unknown. Here, we show that in the absence of embryonic STI1, several Hsp90 client proteins are decreased by 50%, although Hsp90 levels are unaffected.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Iaci N Soares"

  • - Iaci N Soares' research primarily focuses on the aggregation of tumor suppressor proteins, particularly p53 and its family members, investigating their roles in cancer progression and cellular metabolism.
  • - Recent findings demonstrate that p53 undergoes amyloid-like aggregation in cancer, with studies revealing various conditions that promote this process, providing insights into potential therapeutic targets.
  • - The research also explores new synthetic compounds, such as CDDO-Me, which shows promise in inhibiting key metabolic enzymes like pyruvate kinase M2, a critical component of cancer metabolism via the Warburg effect.