A simple sensitive method for nonspecific recognition of armagnac, cognac, whiskey, and ethanol/water mixture was developed by using photoluminescence (PL) of carbon nanoparticles (NPs). The carbon NPs were synthesized from the mixture of urea and anhydrous citric acid, followed by few annealing processes to achieve the full effect by solvothermal carbonization. PL features of carbon NPs depend on the alcohol environments in which the NPs are dispersed.
View Article and Find Full Text PDFSafe application of nanoparticles in medicine requires full understanding of their pharmacokinetics including catabolism in the organism. However, information about nanoparticle degradation is still scanty due to difficulty of long-term measurements by invasive techniques. Here, we describe a magnetic spectral approach for monitoring of magnetic particle (MP) degradation.
View Article and Find Full Text PDFMultiple fission is a cell cycle variation leading to the production of more than two daughter cells. Here, we used synchronized cultures of the chlorococcal green alga to study its growth and pattern of cell division under varying light intensities. The time courses of DNA replication, nuclear and cellular division, cell size, total RNA, protein content, dry matter and accumulation of starch were observed at incident light intensities of 110, 250 and 500 µmol photons ms.
View Article and Find Full Text PDFThis paper reports the synthesis of branched alkylene guanidines using microfluidic technologies. We describe the preparation of guanidine derivatives at lower temperatures, and with significantly less time than that required in the previously applicable method. Furthermore, the use of microfluidics allows the attainment of high-purity products with a low residual monomer content, which can expand the range of applications of this class of compounds.
View Article and Find Full Text PDFBackground: Hypertension is a leading cause of chronic kidney disease worldwide. Early studies demonstrated the short-term effects of hypertension on kidney function and morphology in ablative nephropathy. The aim of this study was to investigate the long-term consequences of hypertension in 5/6 nephrectomy (5/6NE) model.
View Article and Find Full Text PDFUnderstanding the feasibility to couple semiconducting and magnetic properties in metal halide perovskites through interface design opens new opportunities for creating the next generation spin-related optoelectronics. In this work, a fundamentally new phenomenon of optically induced magnetization achieved by coupling photoexcited orbital magnetic dipoles with magnetic spins at perovskite/ferromagnetic interface is discovered. The depth-sensitive polarized neutron reflectometry combined with in situ photoexcitation setup, constitutes key evidence of this novel effect.
View Article and Find Full Text PDFStreptococcus equi subsp. equi (SEE) is a host-restricted bacterium that causes the common infectious upper respiratory disease known as strangles in horses. Perpetuation of SEE infection appears attributable to inapparent carrier horses because it neither persists long-term in the environment nor infects other host mammals or vectors, and infection results in short-lived immunity.
View Article and Find Full Text PDFAnnu Rev Chem Biomol Eng
June 2021
The bottom-up approach in synthetic biology aims to create molecular ensembles that reproduce the organization and functions of living organisms and strives to integrate them in a modular and hierarchical fashion toward the basic unit of life-the cell-and beyond. This young field stands on the shoulders of fundamental research in molecular biology and biochemistry, next to synthetic chemistry, and, augmented by an engineering framework, has seen tremendous progress in recent years thanks to multiple technological and scientific advancements. In this timely review of the research over the past decade, we focus on three essential features of living cells: the ability to self-reproduce via recursive cycles of growth and division, the harnessing of energy to drive cellular processes, and the assembly of metabolic pathways.
View Article and Find Full Text PDFBackground: RS75091 is a cinnamic acid derivative that has been used for the crystallization of the rabbit ALOX15-inhibitor complex. The atomic coordinates of the resolved ALOX15- inhibitor complex were later on used to define the binding sites of other mammalian lipoxygenase orthologs, for which no direct structural data with ligand has been reported so far.
Introduction: The putative binding pocket of the human ALOX5 was reconstructed on the basis of its structural alignment with rabbit ALOX15-RS75091 inhibitor.
An increase in temperature can have a profound effect on the cell cycle and cell division in green algae, whereas growth and the synthesis of energy storage compounds are less influenced. In laboratory experiments have shown that exposure to a supraoptimal temperature (39 °C) causes a complete block of nuclear and cellular division accompanied by an increased accumulation of starch. In this work we explore the potential of supraoptimal temperature as a method to promote starch production in in a pilot-scale photobioreactor.
View Article and Find Full Text PDFPathogenic variants in MYH7 cause a wide range of cardiac and skeletal muscle diseases with childhood or adult onset. These include dilated and/or hypertrophic cardiomyopathy, left ventricular non-compaction cardiomyopathy, congenital myopathies with multi-minicores and myofiber type disproportion, myosin storage myopathy, Laing distal myopathy and others (scapulo-peroneal or limb-girdle muscle forms). Here we report the results from molecular genetic analyses (NGS and Sanger sequencing) of 4 patients in two families with variable neuromuscular phenotypes with or without cardiac involvement.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
October 2021
Protein arginine methyltransferases (PRMTs) are essential epigenetic and post-translational regulators in eukaryotic organisms. Dysregulation of PRMTs is intimately related to multiple types of human diseases, particularly cancer. Based on the previously reported PRMT1 inhibitors bearing the diamidine pharmacophore, we performed virtual screening to identify additional amidine-associated structural analogs.
View Article and Find Full Text PDFSerology has provided valuable diagnostic and epidemiological data on antibody responses to SARS-CoV-2 in diverse patient cohorts. Deployment of high content, multiplex serology platforms across the world, including in low and medium income countries, can accelerate longitudinal epidemiological surveys. Here we report multiSero, an open platform to enable multiplex serology with up to 48 antigens in a 96-well format.
View Article and Find Full Text PDFPhi29 DNA polymerase (Phi29 Pol) has been successfully applied in DNA nanoball-based sequencing, real-time DNA sequencing from single polymerase molecules and nanopore sequencing employing the sequencing by synthesis (SBS) method. Among these, polymerase-assisted nanopore sequencing technology analyses nucleotide sequences as a function of changes in electrical current. This ionic, current-based sequencing technology requires polymerases to perform replication at high salt concentrations, for example 0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2021
We report a novel family of natural lipoglycopeptides produced by Streptomyces sp. INA-Ac-5812. Two major components of the mixture, named gausemycins A and B, were isolated, and their structures were elucidated.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
July 2021
Assessing intestinal development and host-microbe interactions in healthy human infants requires noninvasive approaches. We have shown that the transcriptome of exfoliated epithelial cells in feces can differentiate breast-fed and formula-fed infants and term and preterm infants. However, it is not fully understood which regions of the intestine that the exfoliated cells represent.
View Article and Find Full Text PDFThe transfer of electrons across and along biological membranes drives the cellular energetics. In the context of artificial cells, it can be mimicked by minimal means, while using synthetic alternatives of the phospholipid bilayer and the electron-transducing proteins. Furthermore, the scaling up to biologically relevant and optically accessible dimensions may provide further insight and allow assessment of individual events but has been rarely attempted so far.
View Article and Find Full Text PDFWhile pharmacological treatments for psychiatric disorders have offered great promise and have provided clinically meaningful symptom relief these treatments have had less effect on altering the course of these disorders. Research has provided many new insights about the effects of different psychotropic agents on the functions of various brain systems as investigators have embraced the "translational research model." However, this theoretical approach of deconstructing complex behaviors into smaller measurable behavioral units and targeting brain systems that are hypothesized to underlie these discrete behaviors has offered little of practical clinical relevance to significantly improve the treatment of psychiatric disorders in this century.
View Article and Find Full Text PDFIntrinsic mechanical properties of sub-100 nm thin films are markedly difficult to obtain, yet an ever-growing necessity for emerging fields such as soft organic electronics. To complicate matters, the interfacial contribution plays a major role in such thin films and is often unexplored despite supporting substrates being a main component in current metrologies. Here we present the shear motion assisted robust transfer technique for fabricating free-standing sub-100 nm films and measuring their inherent structural-mechanical properties.
View Article and Find Full Text PDFProtected 4-carboxyoxazolidines and thiazolidines (pseudoprolines) are derivatives of serine, threonine or cysteine amino acids. Such compounds are used in peptide synthesis among the other protected amino acids. They are usually practiced when a peptide sequence is readily aggregating during synthesis due to their ability to disrupt secondary structure formation.
View Article and Find Full Text PDFArachidonic acid lipoxygenases (ALOXs) have been suggested to function as monomeric enzymes, but more recent data on rabbit ALOX15 indicated that there is a dynamic monomer-dimer equilibrium in aqueous solution. In the presence of an active site ligand (the ALOX15 inhibitor RS7) rabbit ALOX15 was crystalized as heterodimer and the X-ray coordinates of the two monomers within the dimer exhibit subtle structural differences. Using native polyacrylamide electrophoresis, we here observed that highly purified and predominantly monomeric rabbit ALOX15 and human ALOX15B are present in two conformers with distinct electrophoretic mobilities.
View Article and Find Full Text PDFHealth care-associated infections are a leading cause of inpatient complications. Rapid pathogen detection/identification is a major challenge in sepsis management that highly influences the successful outcome. The current standard of microorganism identification relies on bacterial growth in culture, which has several limitations.
View Article and Find Full Text PDF