We investigate nonequilibrium transport properties of a quantum dot in the Coulomb blockade regime under the condition of negligible inelastic scattering during the dwelling time of the electrons in the dot. Using the quantum kinetic equation we show that the absence of thermalization leads to a double step in the distribution function of electrons on the dot, provided that it is symmetrically coupled to the leads. This drastically changes nonlinear transport through the dot resulting in an additional (compared to the thermalized case) jump in the conductance at voltages close to the charging energy, which could serve as an experimental manifestation of the absence of thermalization.
View Article and Find Full Text PDFWe investigate the Coulomb blockade in quantum dots asymmetrically coupled to the leads for an arbitrary voltage bias focusing on the regime where electrons do not thermalise during their dwell time in the dot. By solving the quantum kinetic equation, we show that the current-voltage characteristics are crucially dependent on the ratio of the Fermi energy to charging energy on the dot. In the standard regime when the Fermi energy is large, there is a Coulomb staircase which is practically the same as in the thermalised regime.
View Article and Find Full Text PDFIn order to observe many-body localisation in electronic systems, decoupling from the lattice phonons is required, which is possible only in out-of-equilibrium systems. We show that such an electron-phonon decoupling may happen in suspended films and it manifests itself via a bistability in the electron temperature. By studying the electron-phonon cooling rate in disordered, suspended films with two-dimensional phonons, we derive the conditions needed for such a bistability, which can be observed experimentally through hysteretic jumps of several orders of magnitude in the nonlinear current-voltage characteristics.
View Article and Find Full Text PDFWe revise a phase diagram for the sliding Luttinger liquid (SLL) of coupled one-dimensional quantum wires packed in two- or three-dimensional arrays in the absence of a magnetic field. We analyse whether physically justifiable (reasonable) inter-wire interactions, i.e.
View Article and Find Full Text PDFThe Hong-Ou-Mandel (HOM) effect is widely regarded as the quintessential quantum interference phenomenon in optics. In this work we examine how nonlinearity can smear statistical photon bunching in the HOM interferometer. We model both the nonlinearity and a balanced beam splitter with a single two-level system and calculate a finite probability of anti-bunching arising in this geometry.
View Article and Find Full Text PDFThe study was aimed to the improvement of the diagnosis and treatment of patients with prostate cancer (PC). The study included 46 patients with recurrent prostate cancer after radical prostatectomy (RPE). The examination included contrast enhanced magnetic resonance imaging (endorectal coil 1.
View Article and Find Full Text PDFWe study a flow of ultracold bosonic atoms through a one-dimensional channel that connects two macroscopic three-dimensional reservoirs of Bose-condensed atoms via weak links implemented as potential barriers between each of the reservoirs and the channel. We consider reservoirs at equal chemical potentials so that a superflow of the quasicondensate through the channel is driven purely by a phase difference 2Φ imprinted between the reservoirs. We find that the superflow never has the standard Josephson form ∼sin2Φ.
View Article and Find Full Text PDFWe study electronic transport in a Luttinger liquid with an embedded impurity, which is either a weak scatterer (WS) or a weak link (WL), when interacting electrons are coupled to one-dimensional massless bosons (e.g., acoustic phonons).
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2010
We obtain the exact asymptotic result for the disorder-averaged probability distribution function for a random walk in a biased Sinai model and show that it is characterized by a creeping behavior of the displacement moments with time,
We argue that giant jumps of current at finite voltages observed in disordered films of InO, TiN, and YSi manifest a bistability caused by the overheating of electrons. One of the stable states is overheated and thus low resistive, while the other, high-resistive state is heated much less by the same voltage. The bistability occurs provided that cooling of electrons is inefficient and the temperature dependence of the equilibrium resistance R(T) is steep enough.
View Article and Find Full Text PDFWe propose a method of measuring the electron temperature T_{e} in mesoscopic conductors and demonstrate experimentally its applicability to micron-size graphene devices in the linear-response regime (T_{e} approximately T, the bath temperature). The method can be especially useful in case of overheating, T_{e}>T. It is based on analysis of the correlation function of mesoscopic conductance fluctuations.
View Article and Find Full Text PDFWe have studied low-temperature properties of interacting electrons in a one-dimensional quantum wire (Luttinger liquid) side-hybridized with a single-level impurity. The hybridization induces a backscattering of electrons in the wire which strongly affects its low-energy properties. Using a one-loop renormalization group approach valid for a weak electron-electron interaction, we have calculated a transmission coefficient through the wire, T(epsilon), and a local density of states, nu(epsilon) at low energies epsilon.
View Article and Find Full Text PDFWe suggest to use "fluctuation spectroscopy" as a method to detect granularity in a disordered metal close to a superconducting transition. We show that with lowering temperature T the resistance R(T) of a system of relatively large grains initially grows due to the fluctuation suppression of the one-electron tunneling but decreases with further lowering T due to the coherent charge transfer of the fluctuation Cooper pairs. Under certain conditions, such a maximum in R(T) turns out to be sensitive to weak magnetic fields due to a novel Maki-Thompson-type mechanism.
View Article and Find Full Text PDFWe introduce a continuum model describing data losses in a single node of a packet-switched network (like the Internet) which preserves the discrete nature of the data loss process. By construction, the model has critical behavior with a sharp transition from exponentially small to finite losses with increasing data arrival rate. We show that such a model exhibits strong fluctuations in the loss rate at the critical point and non-Markovian power-law correlations in time, in spite of the Markovian character of the data arrival process.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2006
We suggest a model for data losses in a single node (memory buffer) of a packet-switched network (like the Internet) which reduces to one-dimensional discrete random walks with unusual boundary conditions. By construction, the model has critical behavior with a sharp transition from exponentially small to finite losses with increasing data arrival rate. We show that for a finite-capacity buffer at the critical point the loss rate exhibits strong fluctuations and non-Markovian power-law correlations in time, in spite of the Markovian character of the data arrival process.
View Article and Find Full Text PDFPhys Rev B Condens Matter
October 1993