Publications by authors named "IM Chou"

The search for new phases is an important direction in materials science. The phase transition of sulfides results in significant changes in catalytic performance, such as MoS and WS. Cubic pentlandite [cPn, (Fe, Ni)S] can be a functional material in batteries, solar cells, and catalytic fields.

View Article and Find Full Text PDF

Cold seeps occur in continental margins worldwide and are deep-sea oases. Anaerobic oxidation of methane is an important microbial process in the cold seeps and plays an important role in regulating methane content. This study elucidates the diversity and potential activities of major microbial groups in dependent anaerobic methane oxidation and sulfate-dependent anaerobic methane oxidation processes and provides direct evidence for the occurrence of nitrate-/nitrite-dependent anaerobic methane oxidation (Nr-/N-DAMO) as a previously overlooked microbial methane sink in the hydrate-bearing sediments of the South China Sea.

View Article and Find Full Text PDF

In the solar system, oldhamite (CaS) is generally considered to be formed by the condensation of solar nebula gas. Enstatite chondrites, one of the most important repositories of oldhamite, are believed to be representative of the material that formed Earth. Thus, the formation mechanism and the evolution process of oldhamite are of great significance to the deep understanding of the solar nebula, meteorites, the origin of Earth, and the C-O-S-Ca cycles of Earth.

View Article and Find Full Text PDF

To ascertain the reaction variables on o-chloroaniline (o-ClA) mineralization, total nitrogen (TN) removal rate, and N-species distribution, o-ClA was subjected to catalytic supercritical water oxidation (CSCWO) in a fused quartz tube reactor (FQTR). The findings demonstrated that when the temperature, reaction time, and excess oxidant were 400 °C, 90 min, and 150%, respectively, the mineralization rate of o-ClA could reach more than 95%. Moreover, potential degradation pathways of o-ClA in supercritical water oxidation (SCWO) was proposed according to the GC-MS results.

View Article and Find Full Text PDF

Most economically important tungsten (W) deposits are of magmatic-hydrothermal origin. The species and partitioning of W during fluid exsolution, considered to be the controlling factors for the formation of ore deposits, are thus of great significance to investigate. However, this issue has not been well addressed mainly due to the significant difference in reported partition coefficients (e.

View Article and Find Full Text PDF

Raman spectroscopy is a powerful method for determining the densities of gas species in fluid inclusions, especially for H-bearing inclusions in which the microthermometry approach is difficult to apply. The relationships between Raman peak position and H density have been recorded in several previous studies. However, systematic discrepancies exist among these studies.

View Article and Find Full Text PDF

There are no reports on the hydrogen sulfide hydrate growth process and morphology in micropores due to the toxicity of hydrogen sulfide. In this study, the experimental measurements and dissociation enthalpies were provided to assess the effect of the microcapillary silica tube size on hydrogen sulfide hydrate dissociation conditions. To simulate micropore sediments, the HS hydrate growth processes and morphologies at different supercooling temperatures were observed in this study.

View Article and Find Full Text PDF

Pyrolysis is a highly promising technology for the efficient utilization of low-rank coal. The structure of coal plays an important role in its utilization. In this paper, the evolution of the char structure during heat treatment (200-800 °C) of Naomaohu coal and its different vitrinite-rich fractions was studied.

View Article and Find Full Text PDF

Degradation of phenol by sodium persulfate (SPS) in hot compressed water (HCW) was investigated in a lab-built fused quartz tube reactor (FQTR) coupled with Raman spectroscopy system. The species of SO, SO, HSO, SO and HSO in the reaction system were qualitatively and quantitatively analyzed by Raman spectroscopy. The hydrothermal stability of phenol and SPS at different temperature and the degradation of phenol by SPS were also studied.

View Article and Find Full Text PDF

A new type of hydrothermal diamond-anvil cell (HDAC-VII) and its accompanied cooling system were designed. The design of HDAC-VII in which the three posts work simultaneously as guideposts and screw posts greatly shortened the horizontal size of HDAC compared with older types. It provides more open space and shorter distance to analyze and observe the sample chamber from side access.

View Article and Find Full Text PDF

High hydrostatic pressure (HHP) exerts severe effects on cellular processes including impaired cell division, abolished motility and affected enzymatic activities. Transcriptomic and proteomic analyses showed that bacteria switch the expression of genes involved in multiple energy metabolism pathways to cope with HHP. We sought evidence of a changing bacterial metabolism by supplying appropriate substrates that might have beneficial effects on the bacterial lifestyle at elevated pressure.

View Article and Find Full Text PDF

A new type of HDAC-V hydrothermal diamond anvil cell (HDAC-VT) has been designed to meet the demands of X-ray research including X-Ray Fluorescence, X-ray Absorption Spectroscopy, and small angle X-ray scattering. The earlier version of HDAC-V that offered a large rectangular solid angle used two posts and two driver screws on both sides of a rectangular body. The new version HDAC-VT in a triangular shape has two alternative guide systems, either three posts inserted into bushings suitable for small anvil faces or linear ball bearings suitable for large anvil faces.

View Article and Find Full Text PDF

Liquid–liquid phase separation was observed in aqueous MgSO4 solutions with excess H2SO4 at elevated temperatures; the aqueous MgSO4/H2SO4 solutions separated into MgSO4-rich droplets (fluid F1) and a MgSO4-poor phase (fluid F2) during heating. The phase separation temperature increases with SO4(2–)/Mg2+ ratio at a constant MgSO4 concentration. At a MgSO4/H2SO4 ratio of 5, the liquid–liquid phase separation temperature decreases with an increase in MgSO4 concentration up to ∼1.

View Article and Find Full Text PDF

Post-translational regulation plays an important role in cellular metabolism. Earlier studies showed that the activity of plastidial starch phosphorylase (Pho1) may be regulated by proteolytic modification. During the purification of Pho1 from sweet potato roots, we observed an unknown high molecular weight complex (HX) showing Pho1 activity.

View Article and Find Full Text PDF

For x-ray spot sizes of a few tens of microns or smaller, a millimeter-sized flat analyzer crystal placed approximately 1 cm from the sample will exhibit high energy resolution while subtending a collection solid angle comparable to that of a typical spherically bent crystal analyzer (SBCA) at much larger working distances. Based on this observation and a nonfocusing geometry for the analyzer optic, we have constructed and tested a short working distance (SWD) multicrystal x-ray spectrometer. This prototype instrument has a maximum effective collection solid angle of 0.

View Article and Find Full Text PDF

Metal gaskets (Re, Ir, Inconel, or stainless steel) normally used to contain fluid samples in the hydrothermal diamond-anvil cell (HDAC) are sometimes undesirable due to possible contamination and to gasket deformation at high pressures and temperatures resulting in nonisochoric behavior. Furthermore, in x-ray spectroscopic experiments, metal gaskets may attenuate the incident x-ray beam and emitted fluorescence x-rays, and the interaction of scattered radiation with the gasket may produce fluorescence that interferes with the x-ray spectrum of the sample. New arrangements and procedures were tested for the operation of the HDAC without using the metal gaskets.

View Article and Find Full Text PDF

A modified hydrothermal diamond anvil cell (HDAC) rail assembly has been constructed for making synchrotron x-ray absorption spectroscopy, x-ray fluorescence, and x-ray mapping measurements on fluids or solid phases in contact with hydrothermal fluids up to approximately 900 degrees C and 700 MPa. The diamond anvils of the HDAC are modified by laser milling grooves or holes, for the reduction of attenuation of incident and fluorescent x rays and sample cavities. The modified HDAC rail assembly has flexibility in design for measurement of light elements at low concentrations or heavy elements at trace levels in the sample and the capability to probe minute individual phases of a multiphase fluid-based system using focused x-ray microbeam.

View Article and Find Full Text PDF

A new method was developed for in situ study of the diffusive transfer of methane in aqueous solution under high pressures near hydrate formation conditions within an optical capillary cell. Time-dependent Raman spectra of the solution at several different spots along the one-dimensional diffusion path were collected and thus the varying composition profile of the solution was monitored. Diffusion coefficients were estimated by the least squares method based on the variations in methane concentration data in space and time in the cell.

View Article and Find Full Text PDF

Epsomite (MgSO(4).7H(2)O) and hexahydrite (MgSO(4).6H(2)O) are common minerals found in marine evaporite deposits, in saline lakes as precipitates, in weathering zones of coal and metallic deposits, in some soils and their efflorescences, and possibly on the surface of Europa as evaporite deposits.

View Article and Find Full Text PDF

Detailed study of pure methane hydrate in a diamond cell with in situ optical, Raman, and x-ray microprobe techniques reveals two previously unknown structures, structure II and structure H, at high pressures. The structure II methane hydrate at 250 MPa has a cubic unit cell of a = 17.158(2) A and volume V = 5051.

View Article and Find Full Text PDF

A previously unknown solid phase of H2O has been identified by its peculiar growth patterns, distinct pressure-temperature melting relations, and vibrational Raman spectra. Morphologies of ice crystals and their pressure-temperature melting relations were directly observed in a hydrothermal diamond-anvil cell for H2O bulk densities between 1203 and 1257 kilograms per cubic meter at temperatures between -10 degrees and 50 degreesC. Under these conditions, four different ice forms were observed to melt: two stable phases, ice V and ice VI, and two metastable phases, ice IV and the new ice phase.

View Article and Find Full Text PDF

High-pressure (0.8 gigapascals) granulite facies garnet from Gore Mountain, New York, hosts multiple solid inclusions containing the low-pressure silica polymorph cristobalite along with albite and minor ilmenite. Identification of cristobalite is based on Raman spectra, electron microprobe analysis, and microthermometric measurements on the alpha/beta phase transformation.

View Article and Find Full Text PDF