Blazars are active galactic nuclei, which are powerful sources of radiation whose central engine is located in the core of the host galaxy. Blazar emission is dominated by non-thermal radiation from a jet that moves relativistically towards us, and therefore undergoes Doppler beaming. This beaming causes flux enhancement and contraction of the variability timescales, so that most blazars appear as luminous sources characterized by noticeable and fast changes in brightness at all frequencies.
View Article and Find Full Text PDFAfter the initial burst of γ-rays that defines a γ-ray burst (GRB), expanding ejecta collide with the circumburst medium and begin to decelerate at the onset of the afterglow, during which a forward shock travels outwards and a reverse shock propagates backwards into the oncoming collimated flow, or 'jet'. Light from the reverse shock should be highly polarized if the jet's magnetic field is globally ordered and advected from the central engine, with a position angle that is predicted to remain stable in magnetized baryonic jet models or vary randomly with time if the field is produced locally by plasma or magnetohydrodynamic instabilities. Degrees of linear polarization of P ≈ 10 per cent in the optical band have previously been detected in the early afterglow, but the lack of temporal measurements prevented definitive tests of competing jet models.
View Article and Find Full Text PDFIntroduction: Autoimmune chronic atrophic gastritis (CAG) causes hypochlorhydria and hypergastrinaemia, which can lead to enterochromaffin-like (ECL) cell hyperplasia and gastric neuroendocrine tumours (type 1 gastric NETs). Most behave indolently, but some larger tumours metastasise. Antrectomy, which removes the source of the hypergastrinaemia, usually causes tumour regression.
View Article and Find Full Text PDFBackground: Type-1 gastric neuroendocrine tumours (NETs) arise in some patients with chronic hypergastrinaemia secondary to autoimmune atrophic gastritis. Patients with small tumours are usually managed conservatively, because their prognosis is very good. However, larger tumours may require surgical intervention.
View Article and Find Full Text PDFThe dwarf planet Eris is a trans-Neptunian object with an orbital eccentricity of 0.44, an inclination of 44 degrees and a surface composition very similar to that of Pluto. It resides at present at 95.
View Article and Find Full Text PDFThe nature of the jets and the role of magnetic fields in gamma-ray bursts (GRBs) remains unclear. In a baryon-dominated jet only weak, tangled fields generated in situ through shocks would be present. In an alternative model, jets are threaded with large-scale magnetic fields that originate at the central engine and that accelerate and collimate the material.
View Article and Find Full Text PDFLong-duration gamma-ray bursts (GRBs) release copious amounts of energy across the entire electromagnetic spectrum, and so provide a window into the process of black hole formation from the collapse of massive stars. Previous early optical observations of even the most exceptional GRBs (990123 and 030329) lacked both the temporal resolution to probe the optical flash in detail and the accuracy needed to trace the transition from the prompt emission within the outflow to external shocks caused by interaction with the progenitor environment. Here we report observations of the extraordinarily bright prompt optical and gamma-ray emission of GRB 080319B that provide diagnostics within seconds of its formation, followed by broadband observations of the afterglow decay that continued for weeks.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
July 2007
The gastric pathogen Helicobacter pylori accelerates the progression to gastric cancer but the precise mechanisms that mediate carcinogenesis remain unidentified. We now describe how Helicobacter and gastrin stimulate the expression of a putative growth factor, Reg1, in primary gastric epithelial cells. RT-PCR and Western immunoblotting of human gastric corpus and antrum showed significantly increased Reg1alpha in H.
View Article and Find Full Text PDFWe report the optical polarization of a gamma-ray burst (GRB) afterglow, obtained 203 seconds after the initial burst of gamma-rays from GRB 060418, using a ring polarimeter on the robotic Liverpool Telescope. Our robust (2sigma) upper limit on the percentage of polarization, less than 8%, coincides with the fireball deceleration time at the onset of the afterglow. The combination of the rate of decay of the optical brightness and the low polarization at this critical time constrains standard models of GRB ejecta, ruling out the presence of a large-scale ordered magnetic field in the emitting region.
View Article and Find Full Text PDFEpithelial ovarian cancer (EOC) is the most common and lethal form of gynecological malignancy. These cancers are thought to be derived from the ovarian surface epithelium (OSE). We have previously reported that the epithelial-specific FGF receptor 2 splice variant IIIb is not expressed in normal OSE, but is expressed in approximately 80% of EOCs.
View Article and Find Full Text PDFEpithelial ovarian cancer is the most common form of gynaecological malignancy. This lethal disease is thought to arise in ovarian surface epithelial (OSE) cells. The biology of these cells is not well understood, due to the limited amount of tissue that can be obtained from a single biopsy and their limited life span in culture.
View Article and Find Full Text PDFEpithelial ovarian cancers (EOCs) arise in the Ovarian Surface Epithelium (OSE). This tissue is a simple, poorly committed mesothelium which exhibits characteristics of epithelial and mesenchymal cells when grown in culture. In contrast, EOCs frequently exhibit properties of complex epithelial tissues of the female reproductive tract, such as oviductal, endometrial and cervical epithelia, and show induction of expression of epithelial markers such as E-cadherin.
View Article and Find Full Text PDFWhite dwarfs are the remnant cores of stars that initially had masses of less than 8 solar masses. They cool gradually over billions of years, and have been suggested to make up much of the 'dark matter' in the halo of the Milky Way. But extremely cool white dwarfs have proved difficult to detect, owing to both their faintness and their anticipated similarity in colour to other classes of dwarf stars.
View Article and Find Full Text PDF