Although DNA hypermethylation within promoter CpG islands is highly correlated with tumorigenesis, it has not been established whether DNA hypermethylation within a specific tumor suppressor gene (TSG) is sufficient to fully transform a somatic stem cell. In this study, we addressed this question using a novel targeted DNA methylation technique to methylate the promoters of HIC1 and RassF1A, two well-established TSGs, along with a two-component reporter system to visualize successful targeting of human bone marrow-derived mesenchymal stem cells (MSC) as a model cell system. MSCs harboring targeted promoter methylations of HIC1/RassF1A displayed several features of cancer stem/initiating cells including loss of anchorage dependence, increased colony formation capability, drug resistance, and pluripotency.
View Article and Find Full Text PDFBackground: Targeting abnormal DNA methylation represents a therapeutically relevant strategy for cancer treatment as demonstrated by the US Food and Drug Administration approval of the DNA methyltransferase inhibitors azacytidine and 5-aza-2'-deoxycytidine for the treatment of myelodysplastic syndromes. But their use is associated with increased incidences of bone marrow suppression. Alternatively, procainamide has emerged as a potential DNA demethylating agent for clinical translation.
View Article and Find Full Text PDF